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At sufficiently large proton energies, Glauber multiple-scattering theory offers an
economical way of describing the final state interactions in electro-induced proton
emission off nuclear targets. A fully unfactorized and relativistic formulation of
Glauber multiple-scattering theory is presented. Predictions are given for the sep-
arated 16O(e, e′p) response functions in quasi-elastic kinematics. The 16O(e, e′p)
results are compared with data and the results of Relativistic Distorted-Wave
Impulse Approximation calculations. Results for the nuclear transparencies in
12C and 56Fe are presented.

1. INTRODUCTION

From early in the seventies onward, exclusive A(e, e′p) measurements, whereby the residual A−1
nucleus is left in the discrete part of its energy spectrum, have been extensively applied to study the
low-energy part of the nuclear spectral function. The systematic measurements on various target
nuclei revealed that the momentum distributions of bound protons in nuclei are in line with the
predictions of the nuclear mean-field model. The occupation probabilities for the single-particle
levels, on the other hand, turned out to be substantially smaller than what could be expected
within the context of a naive mean-field model [1]. These findings provided sound evidence for the
importance of short- and long-range correlations for the properties of nuclei [2].

From 1990 onward, the scope of A(e, e′p) reactions has been widened. These days, rather than
for studying mean-field properties, electro-induced single-proton knockout off nuclei is a tool to
learn for example about relativistic effects in nuclei [3] or to study fundamental issues like possible
medium modifications of protons and neutrons [4, 5]. Another timely issue is the question at
what distance scales quark and gluons become relevant degrees of freedom for understanding the
behavior of nuclei. Here, searches for the onset of the color transparency phenomenon in A(e, e′p)
reactions play a pivotal role [6]. In these studies one looks for departures from predictions for
proton transparencies from models using standard nuclear-physics wave functions combined with
the best available tools for describing final-state interactions (FSI).

Traditionally, the exclusive A(e, e′p) measurements have been interpreted within the framework
of the non-relativistic distorted wave impulse approximation (DWIA) [7, 8]. In the Impulse Ap-
proximation (IA), the electromagnetic interaction of the virtual photon with the target nucleus is
assumed to occur through the individual nucleons. In the most simple DWIA versions, an indepen-
dent particle model (IPM) picture is adopted and the initial and final A-nucleon wave functions are
Slater determinants. The latter are composed of single-particle wave functions which are solutions
to a one-body Schrödinger equation. Typically, in a DWIA approach the final proton scattering
state is computed as an eigenfunction of an optical potential, containing a real and imaginary
part. Parameterizations for these optical potentials are usually not gained from basic grounds, but
require empirical input from elastic pA measurements. In the DWIA calculations, one adopts the
philosophy that potentials which parameterize FSI effects in elastic p + A −→ p + A reactions, can
also be applied to model the proton’s distortions in A + e −→ A − 1 + e′ + p.

A research effort which started back in the late eighties has resulted in the development of
a number of relativistic DWIA (RDWIA) models for computing A(e, e′p) observables [10–14].
The available RDWIA frameworks adopt the independent-particle approximation with relativistic
bound-state single-particle wave functions. They are customarily obtained from Hartree calcula-
tions within the context of the σ − ω model [15]. The scattering states, on the other hand, are
solutions to a time-independent Dirac equation with relativistic optical potentials. Systematic sur-
veys illustrated that in some A(~e, e′~p) observables relativistic effects are sizable [16, 18] and that
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RDWIA-based calculations of A(~e, e′~p) observables are at least as successful as the more traditional
non-relativistic DWIA theories.

Given the highly inelastic character and diffractive nature of the proton-nucleon cross sections
for proton lab momenta exceeding 1 GeV, the use of optical potentials for modeling FSI processes
does not seem natural. In this energy regime, Glauber multiple-scattering theory provides an al-
ternative and economical description of FSI mechanisms [19–21]. This model relies on the eikonal
approximation and the assumption of consecutive cumulative scattering of a fast proton on a target
composed of A-1 “frozen” scatterers. Most A(e, e′p) calculations based on the Glauber approach
are non-relativistic and/or factorized [22–26]. In Ref. [9] we have outlined a relativistic and unfac-
torized formulation of Glauber theory for calculating A(e, e′p) observables. The major assumptions
underlying our relativistic Glauber model bear a strong resemblance with those adopted in the
RDWIA models developed during the last two decades. One of the pivotal assumptions underlying
Glauber theory is the eikonal approximation.

The organization of this paper is as follows. First, in Sect. 2 we summarize the basic assumptions
entering the relativized and unfactorized formulation of Glauber multiple-scattering theory. Section
3 is devoted to a discussion of some of the results obtained with the RMSGA framework. Section
4 summarizes our findings and states our conclusions.

2. RELATIVISTIC MULTIPLE-SCATTERING GLAUBER APPROXIMATION

The Relativistic formulation of the Multiple-Scattering Glauber approximation of Ref. [9] is
based on the independent-nucleon framework and the Impulse Approximation (IA). This implies
that the basic quantity to be evaluated when computing A(~e, e′~p) observables is the following
transition matrix element

〈Jµ〉 =

∫
d~r

∫
d~r2 . . .

∫
d~rA

×
(

Ψ
~kp,ms

A (~r, ~r2, ~r3, . . . ~rA)

)†

γ0Jµ(r)ei~q·~rΨgs
A (~r, ~r2, ~r3, . . . ~rA) , (1)

where Ψ
~kp,ms

A and Ψgs
A are the final and initial states which are modeled in terms of Slater deter-

minants. Further, Jµ(r) is a one-body current operator.
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Fig. 1: The computed radial and polar-angle dependence of the real and imaginary part of
the Dirac-Glauber phase for protons with Tp=439 MeV ejected from the Fermi level in 56Fe.
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The RMSGA framework adopts the eikonal approximation which is supposedly a valid one given
the diffractive behavior of the elementary proton-nucleon scattering mechanisms at sufficiently
large c.o.m. energies (

√
s) and small scattering angles (small −t). For the description of elastic

p −40 Ca processes, the Dirac eikonal approximation has been shown to be a valid one for kinetic
energies Tp ≈500 MeV [27]. Adopting the eikonal approximation and assuming subsequent elastic
rescattering from “frozen” spectator nucleons, the A-nucleon wave function in the final state of
e + A −→ e′ + (A − 1) + p reads

Ψ
~kp,ms

A = A
[
Ŝ (~r, ~r2, . . . ~rA)

[
1

1
E+M ~σ · ~kp

]
eı~kp·~rχ 1

2
ms

ΨJR MR

A−1 (~r2, ~r3, . . . ~rA)

]
, (2)

where ΨJR MR

A−1 is the wave function describing the state in which the residual nucleus is created, A is
the anti-symmetrization operator, and the A-body operator which accounts for all FSI mechanisms
reads

Ŝ (~r, ~r2, ~r3, . . . ~rA) ≡
A∏

j=2

[
1 − Γ

(
~b − ~bj

)
θ (zj − z)

]
. (3)

Here, the product extends over all spectator nucleons. They act as possible scattering centers
for the hit proton in its way out of the target nucleus. Very often, the above-mentioned A-body
operator Ŝ is expanded according to

Ŝ(~r, ~r2, ~r3, . . . ~rA) ≈ 1 −
A∑

j=2

θ(zj − z)Γ(~b −~bj)

+
A∑

j 6=k=2

θ(zj − z)Γ(~b −~bj)θ(zk − z)Γ(~b −~bk) − . . . . (4)

In the expansion, the first term refers to “free passage” of the hit proton, the second to situations
whereby it has been subject to “single scattering” mechanisms before leaving the target nucleus,
and the third to “double scattering” processes. For a heavy nucleus like 208Pb convergence of the
above series is not reached until including quadruple-scattering terms [9]. In Eq. (3), the profile
function Γ takes on the following form

Γ(kp,~b) =
σtot

pN (1 − iεpN )

4π(βpN )2
exp

(
− b2

2βpN
2

)
. (5)

The profile function contains three parameters which depend on the proton kinetic energy. σtot
pN

are the total pN cross sections, βpN the so-called slope parameters and εpN the ratio of the real to
imaginary part of the pN scattering amplitude. In our numerical calculations, we did not rely on
the truncated operator of Eq. (4) but implemented the operator from Eq. (3) in its full complexity.
This makes the numerical calculations increasingly involving as the mass number increases.

Eventually, within the RMSGA framework, the transition matrix element from Eq. (1) reduces
to

〈Jµ〉 =

∫
d~rφ

†
kpms

(~r)G†(~b, z)γ0Jµ(~r)eı~q·~rφα1
(~r) , (6)

where φα1
(~r) is the Dirac bound-state wave function obtained from the σ−ω model in the Hartree

approximation, φ
†
kpms

(~r) is a relativistic plane wave and G(~b, z) the Dirac-Glauber phase which

reads

G(~b, z) =
∏

αocc 6=α

{
1 −

σtot
pN (1 − iεpN )

4πβ2
pN

∫ ∞

0
b′db′

∫ +∞

−∞
dz′θ(z′ − z)

([
Gnκ (r′(b′, z′))

r′(b′, z′)
Yκm(Ω′, ~σ)

]2
+

[
Fnκ (r′(b′, z′))

r′(b′, z′)
Yκm(Ω′, ~σ)

]2)

× exp

[
−(b − b′)2

2β2
pN

] ∫ 2π

0
dφb′ exp

[−bb′

β2
pN

2sin2

(
φb − φb′

2

)]}
. (7)
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The coordinate z′ is chosen along the asymptotic direction of the ejectile. It is worth stressing
that for the hit proton each nucleon in the residual (A − 1) nucleus acts as a “frozen” scattering
center and is represented by its own relativistic single-particle wave function which has an upper
(G(r)) and lower (F (r)) component. Cylindrical symmetry about the axis defined by the ejectile’s
asymptotic momentum makes the Dirac-Glauber phase to depend on two independent variables

(b, z). Hereby, b =| ~b |, where ~b is orthogonal to the ejectile’s direction.
As an example, in Fig. 1 results are displayed for the computed real and imaginary part of the

Glauber phase

G(r, θ) = G
(
b =

√
r2 − r2 cos2 θ , z = r cos θ)

)
, (8)

corresponding with proton emission from the Fermi level in 56Fe with Tp = 439 MeV. The θ denotes
the polar angle with respect to the axis defined by the asymptotic momentum of the ejected
particle. We remind that in the absence of final-state interactions the real part of the Glauber
phase equals one, whereas the imaginary part vanishes identically. In the process of evaluating the
56Fe(e, e′p) matrix elements and performing the integrations over r and θ, the functions displayed
in Fig. 1 quantify the FSI effects. The matrix elements are determined by the values of the Glauber
phase folded with a relativistic bound-state wave function, a relativistic plane wave and a current
operator. The radial coordinate “r” denotes the distance relative to the center of the target nucleus
and the Glauber phase at this value gives a measure of the FSI mechanisms which the hit nucleon
will undergo when the photon hits it at that position. For a given r, an additional non-trivial
integration over the polar angles θ has to be performed. Here, 0o ≤ θ ≤ 90o (90o ≤ θ ≤ 180o) refers
to a situation where the photon hits the nucleon in the forward (backward) hemisphere with respect

to the direction defined by ~kp. The θ = 180o case corresponds with a peculiar event whereby the

photon couples to the proton along the direction defined by −~kp. For θ = 180o and increasing r, one
considers the (rare) occasions that the photon hits the proton at the outskirts of the target nucleus
at the opposite side of the detector and the proton has to travel through the whole target nucleus
before it becomes asymptotically free. It speaks for itself that these kinematic situations induce the
largest FSI effects but cannot be expected to provide large contributions to the integrated matrix
elements as it usually refers to situations with extreme missing momenta.

3. RESULTS

First, we wish to compare the results of the A(e, e′p) RMSGA calculations with alternate rel-
ativistic approaches to the same reaction. The RDWIA framework estimates the effect of FSI
mechanisms by means of a radial-dependent complex optical potential. The parameterizations of
these potentials are obtained from global fits to measured differential cross sections for elastic pA
reactions [17]. It speaks for itself that the RDWIA approach emphasizes the proton-nucleus inelas-
ticities as the major source of FSI mechanisms. The RMSGA framework, on the other hand, puts
proton-nucleon inelasticities forward as the major source of FSI distortions and uses relativistic
single-particle wave functions to describe the motion of the individual scattering centers in the
residual A − 1 nucleus. We have made a consistent comparison of the results from RMSGA and
RDWIA calculations for the 16O(e, e′p) reaction in a kinematic regime where both approaches can
be expected to be applicable. In comparing the predictions of the two models, all the ingredients
apart from the description of the FSI effects, are kept identical. For example, for the comparisons
shown in Fig. 2 both types of frameworks have used the same set of relativistic bound-state wave
functions, dipole electromagnetic form factors, a CC2 current operator and the Coulomb gauge.
The RDWIA curves of Fig. 2 are obtained with the Madrid implementation of the RDWIA frame-
work [13]. We wish to stress that the RDWIA and RMSGA models adopt very different numerical
techniques to compute the scattering wave functions and the corresponding matrix elements. The
Madrid RDWIA code [13] employs a partial-wave expansion to solve the Dirac equation for the
ejectile. The cylindrical symmetry of the Dirac-Glauber phase in Eq. (7) prevents any meaningful
use of this technique in the RMSGA calculations. Instead, the multi-dimensional integrals are
computed numerically. In the limit of vanishing FSI, however, the RDWIA-Madrid and RMSGA-
Gent A(e, e′p) codes should produce identical results when run with the same input parameters. In
the RDWIA framework, the effect of FSI can be artificially made vanishing by nullifying the real
and imaginary parts of the optical potentials when determining the scattering wave functions. In
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Fig. 2: The differential cross section versus missing momentum for proton knockout from the
1p1/2 orbit in 16O(e, e′p) at ω=0.439 GeV and Q2=0.8 (GeV/c)2 in constant (q, ω) kinematics.
The various curves are explained in the text.

the RMSGA model, neglecting FSI mechanisms corresponds with putting G (b, z) = 1. As can be
appreciated from Fig. 2, in the limit of vanishing FSI, which corresponds with the so-called Rel-
ativistic Plane-Wave Impulse Approximation (RPWIA), the RMSGA-Gent and RDWIA-Madrid
codes produce differential cross sections with an agreement better than 5%. This lends support for
the numerical methods used in both computer codes. The remaining differences are attributed to
numerical errors. Remark that the Madrid code is conceived exact at the percent level as has been
checked by comparing RPWIA results obtained through partial-wave expansions with the analytical
expressions which exist in the limit of vanishing FSI. Figure 2 displays also the RDWIA predictions
with two different parameterizations (EDAD1 and EDAIO) for the relativistic optical potentials
along with the RMSGA result. The Glauber and optical-potential results are unexpectedly similar.
The predicted reduction of the RPWIA cross section attributed to FSI mechanisms is comparable
in both approaches. Furthermore, it appears that the eikonal approximation remains valid up to
the highest missing momenta (pm ≈ 350 MeV/c) which have been considered in the numerical cal-
culations. The RMSGA predicts a stronger asymmetry of the differential cross section between the
positive and negative missing-momentum side, than the RDWIA model. This difference is likely
due to the lack of a spin-orbit term in the Glauber-based approach.

Figure 3 compares the predictions of our unfactorized and relativistic Glauber calculation for
the separated 16O(e, e′p) response functions with the data. Surprisingly, the ’out-of-the-box’ and
parameter-free Glauber calculations provide a reasonable description of these separated response
functions for a proton kinetic energy of about 440 MeV.

Quasi-elastic A(e, e′p) reactions have been performed to study the nuclear transparency as a
function of the four-momentum transfer Q2 and to look for the onset of signatures of the color-
transparency phenomenon. The nuclear transparency provides a measure of the likelihood that a
struck “nucleon” escapes from a target nucleus. The Q2 and A dependence of this quantity is a
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Fig. 3: Response functions for the removal of protons from the 1p-shell in 16O(e, e′p) at
ω=0.439 GeV and Q2=0.8 (GeV/c)2 in constant (q, ω) kinematics. The data are from Refs. [3,
28]. The dashed lines are obtained in the IA. The solid lines include also (non-relativistic)
meson-exchange and isobar currents. The adopted spectroscopic factors are 0.6 (1p1/2) and
0.7 (1p3/2).

possible source of information about the onset of the color transparency phenomenon and the (non-
hadronic) small-size components in the nucleon. The transparency is extracted from the measured
A(e, e′p) differential cross sections by means of

T =

∫
∆3k d~k

∫
∆E dE Sexp(~k, E)

cA
∫
∆3k d~k

∫
∆E dE SNRPWIA(~k, E)

,

with the reduced cross section Sexp determined by

Sexp(~k = ~kf − ~q, E = ω − Tp) =

d5σ
dΩpdε′dΩε′

(e, e′p)

KσCC1
ep

The integration over ∆3k and ∆E in the above formulae refers to kinematic ranges in the missing
momentum and energy for which the impulse approximation is believed to be valid. In practice, this
is achieved by setting the upper limits pm ≤ kF (with kF the Fermi momentum) and Em ≤ 80 MeV.
Our results for the nuclear transparencies in 12C and 56Fe are summarized in Fig. 4. Whereas
the Carbon data are reasonably well described, the calculations systematically underpredict the
measured transparencies for Iron. The trends of the calculations are not dramatically different from
what is found in typical non-relativistic Glauber approaches. The theoretical curves in Fig. 4 are
obtained by summing the computed differential cross section for all occupied single-particle states
in constant (q, ω) kinematics. Thereby, we consider analogous kinematic ranges for the missing
momentum and energy as in the experiments. For each of the occupied single-particle states the
Glauber phase was computed. We did not address the kinematic range below Q2=0.6 (GeV/c)2

given the limits imposed by the eikonal approximation.
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Fig. 4: Nuclear transparencies versus Q2 for A(e, e′p) reactions in quasi-elastic kinematics.
Data are from Refs. [29] (open squares), [30, 31] (open triangles), [32] (solid circles) and
[33, 34] (solid triangles).

4. CONCLUSIONS

A fully unfactorized and relativized formulation of Glauber multiple-scattering theory for mod-
eling exclusive A(e, e′p) processes is presented. Compared to the RDWIA models, the relativistic
Glauber approximation holds stronger links with the elementary proton-proton and proton-neutron
processes and does not require the (phenomenological) input of optical potentials based on fits to
elastic pA data. Our fully unfactorized framework can accommodate most of the relativistic effects
which are usually implemented in the RDWIA approaches. Like in the RDWIA models, the bound-
state wave functions are solutions to a Dirac equation with scalar and vector potentials fitted to
the ground-state nuclear properties, i.e. an approach commonly known as the σ − ω model.

The relativized Glauber multiple-scattering formalism can be applied to calculate A(~e, e′~p) ob-
servables for any even-even target nucleus starting from 4He. We wish to stress that Glauber
approaches appear in very different flavors. Our framework avoids many of the approximations,
like the factorization assumption or the introduction of a thickness function, which are commonly
adopted in literature.

We find that the relativistic RMSGA differential cross sections follow similar trends than the
RDWIA ones. This observation points towards a smooth transition between the typical low- and
high-energy regime for describing final-state interactions [35]. Despite the very different philoso-
phies underlying an optical-potential and Glauber approach, their predictions for the A(e, e′p)
observables are not that dramatically different. The relativistic Glauber approach provides a fair
description of the measured nuclear transparencies. In our formulation of the Glauber framework,
though, it emerges that also unintegrated quantities like response functions and polarizations ob-
servables can be reliably computed.
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