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Abstract
Nuclear short-range correlations (SRC) typically manifest themselves in the
tail parts of the single-nucleon momentum distributions. We propose an
approximate practical method for computing those SRC contributions to the
high-momentum parts. The framework adopted in this work is applicable
throughout the nuclear mass table and corrects mean-field models for central,
spin–isospin and tensor correlations by shifting the complexity induced by the
SRC from the wave functions to the operators. It is argued that the expansion
of these modified operators can be truncated to a low order. The proposed
model can generate the SRC-related high-momentum tail of the single-nucleon
momentum distribution. These are dominated by correlation operators acting
on mean-field pairs with vanishing relative radial and angular-momentum
quantum numbers. The proposed method explains the dominant role of pro-
ton–neutron pairs in generating the SRC and accounts for the magnitude and
mass dependence of SRC as probed in inclusive electron scattering. It also
provides predictions for the ratio of the amount of correlated proton–proton to
proton–neutron pairs which are in line with the observations. In asymmetric
nuclei, the correlations make the average kinetic energy for the minority
nucleons larger than for the majority nucleons.
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1. Introduction

Momentum distributions contain all the information about the momentum decomposition of
the nuclear ground-state wave function. The computation of single-nucleon momentum dis-
tributions has reached a very high level of sophistication to date. Ab initio methods with
variational wave functions can be used to compute the momentum distributions for nuclei up
to atomic mass number =A 12 [1–5]. Also for atomic mass number infinity, or nuclear
matter, advanced many-body calculations with realistic nucleon–nucleon (NN) interactions
can be performed [6, 7]. Momentum distributions for mid-heavy and heavy nuclei cannot be
computed with ab initio methods to date. Advanced approximate schemes like cluster
expansions [5, 8, 9] and correlated basis function theory [10, 11] provide momentum dis-
tributions for heavier nuclei.

Since the dawn of nuclear physics, the mean-field model has been put forward as a good
starting point for understanding the complexity of nuclear dynamics. Important corrections to
the mean-field model stem from long-range correlations (LRC) and short range correlations
(SRC) [12]. LRC rather affect the low-momentum (infrared) behaviour of the nuclear
dynamics, whereas SRC are mostly connected with the high-momentum (ultraviolet) beha-
viour. As a consequence, by tuning the spatial resolution of the probe used to study nuclei,
one can reasonably separate the long-range and short-range phenomena. The focus of this
work is on the study of SRC, and LRC are neglected. We wish to put forward a compre-
hensive theoretical framework to interpret the results of the recent measurements probing
SRC, which include studies of the mass and isospin dependence of the SRC. To this end, we
present an approximate practical way of computing the SRC contributions to momentum
distributions for stable nuclei over the entire mass range.

We start from ground-state wave functions that can be written as correlation operators
acting on a single Slater determinant. The computation of expectation values of one-body and
two-body operators for those wave functions involves multi-body effective operators and a
truncation scheme is in order. We propose a low-order correlation operator approximation,
dubbed LCA, that truncates the modified correlated operator corresponding with an one-body
operator to the level of two-body operators. The LCA method is specifically designed for
dealing with correlations which extend over relatively short distances. For the computation of
the single-nucleon momentum distribution, the LCA model developed in section 2, preserves
the normalization conditions.

In section 3, we illustrate that the LCA method is a practical approximate way of
computing the effect of SRC on single-nucleon momentum distributions for nuclei over the
entire mass range. It will be shown that after inclusion of central, spin–isospin and tensor
correlations, it can capture some stylized features of nuclear momentum distributions. Due to
its wide range of applicability, the LCA framework allows one to study the mass and isospin
dependence of SRC and to arrive at a comprehensive picture of the impact of SRC throughout
the mass table. We compare the LCA predictions for the high-momentum parts of the single-
nucleon momentum distributions for 4He, 9Be and 12C with those from ab initio calculations.

Of course, the LCA approximate method is only justified if the resulting physical
quantities like radii and kinetic energies are in reasonable agreement with data and results
from more realistic approaches. The impact of SRC on the average nucleon kinetic energies
and the root mean square (rms) radii for symmetric and asymmetric nuclei is discussed in
section 4. As the correlations induce high-momentum components, they increase the average
kinetic energies. The isospin dependence of the SRC is at the origin of some interesting
features which depend on the asymmetry of nuclei [7, 13–15]. Also these asymmetry effects
will be discussed in section 4.
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2. Formalism

A time-honoured method to account for correlations in independent particle models (IPM) is
to shift the complexity induced by the correlations from the wave functions to the operators
[3, 16]. The correlated ground-state wave function Ψ∣ 〉 is constructed by applying a many-
body correlation operator  to the uncorrelated single Slater determinant Φ∣ 〉. The operator 
considered in this work, corrects the IPM Slater determinant Φ∣ 〉 for SRC:

Ψ Φ∣ = ∣ 1
, (1)

with the normalization factor  Φ Φ≡ 〈 ∣ ∣ 〉   .
†

Determining the operator  represents a
major challenge [17]. One can be guided, however, by the knowledge of the basic features of
the NN force. As far as the short-range nucleon–nucleon (NN) correlations are concerned, 
is dominated by the central, spin–isospin and tensor correlations [4, 18, 19]

  ∏≈ +
< =

  l i j1 ˆ ( , ) , (2)
i j

A

1

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟

with  the symmetrization operator and

σ σ τ τ τ τ
= − + +
= − + ⃗ ⃗ ⃗ ⃗ + ⃗ ⃗στ τ

l i j g i j s i j t i j

g r f r f r S

ˆ ( , ) ˆ ( , ) ˆ ( , ) ˆ ( , )

( ) ( ) · · ( ) · . (3)c ij ij i j i j t ij ij i j

Here, Sij is the tensor operator and = ⃗ − ⃗r r r .ij i j Further, g r( ),c 12 στf r( )12 and τf r( )t 12 are the
central, spin–isospin and tensor correlation functions. The g r( )c 12 encodes the fact that
nucleons have a finite size and forcefully repel each other at short internucleon distances.
There is a very strong model dependence in the theoretical predictions for g r( )c 12 [18, 21].
Predictions range from rather ‘soft’ g r( )c 12 (with ≠→ g rlim ( ) 1r c0 1212 ) to ‘hard’ ones (with

=→ g rlim ( ) 1r c0 1212 ) which possess an exclusion zone in the short-distance radial distribution
of nucleon pairs. From an analysis of the relative pair momentum distributions in
12C ′e e pp( , ) experiments [21] one could deduce that the ‘hard’ correlation functions, like
the one predicted in the G-matrix calculations by Gearhart [22], provide a fair account of the
data. Throughout this work we use the g r( )c 12 of [22]. The spin–isospin and tensor correlation
functions στf r( )12 and τf r( )t 12 extend to larger internucleon distances than g r( )c 12 [20]. We use
the στf r( )12 and τf r( )t 12 from the variational Monte-Carlo calculations by Pieper et al [23].
Note that the g r( )c 12 of [23] is very soft and severely underestimates the relative-momentum
distributions of the 12C ′e e pp( , ) measurements of [21]. The combination of the three
correlation functions considered in this work, has also been used in theory-experiment
comparisons for semi-exclusive ′A e e p( , ) [18, 26] and exclusive 16O ′e e pp( , ) [24].

Evaluating the expectation value of an operator Ω between correlated states of (1) is far
from trivial. The procedure detailed in [16] for example, amounts to rewriting the matrix
element between correlated states

Ψ Ω Ψ∣ ∣ , (4)

as a matrix element between uncorrelated states

Φ Ω Φ∣ ∣
1

. (5)
eff
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Hereby, one introduces an effective transition operator Ω eff
that corrects the operator Ω for

the SRC effects

  

∏ ∏

Ω Ω

Ω

=

= − −
< = < =

 

l i j l k l1 ˆ ( , ) 1 ˆ ( , ) . (6)
i j

A

k l

A

eff †

1

†

1

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟

For the sake of computing single-nucleon momentum distributions, it suffices to consider
one-body operators

 ∑Ω Ω≡
=

i( ). (7)
i

A

1

[1]

In the LCA framework used in this work, a perturbation expansion for (6) is adopted.
Thereby, the local dynamical origin of the SRC is exploited to truncate the expansion
[16, 25]. Studies of the single-nucleon spectral function in nuclear matter [6] reveal that the
correlated part is mainly furnished by three-body breakup processes. For a finite nucleus A
this translates into processes with two close-proximity correlated nucleons and a spectator
residual −A 2 core. This picture has been confirmed in semi-exclusive ′A e e p( , )
measurements [26, 27]. These observations allow one to treat the SRC as pair correlations
to a good approximation. It also justifies a perturbation expansion of (6) that truncates the
effective operators Ω eff

corresponding with a one-body operator Ω∑ = i( )i
A

1
[1]

to the level of
two-body operators. We retain the terms that are linear and quadratic in the correlation
operator l̂ . The quadratic terms contain terms with both correlation operators acting on the
same particle pair. This results in the following effective operator

  

  

∑

∑

Ω Ω Ω

Ω Ω Ω

≈ =

+ + +

=

< =

i

i j i j i j

( )

( , ) ( , ) ( , ) . (8)

i

A

i j

A

eff LCA

1

[1]

1

[1],l [1],l † [1],q⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
Here, the linear (l) and quadratic (q) terms read

Ω Ω Ω= +i j i j l i j( , ) ( ) ( ) ˆ ( , ), (9)
[1],l [1] [1]⎡⎣ ⎤⎦
  Ω Ω Ω= +i j l i j i j l i j( , ) ˆ ( , ) ( ) ( ) ˆ ( , ). (10)

q[1], † [1] [1]⎡
⎣⎢

⎤
⎦⎥

The LCA effective operator of (8) has one- and two-body terms, and can be conveniently
rewritten as  Ω Ω= ∑ < i j( , )i j

ALCA LCA
with

   Ω Ω Ω Ω=
−

+ +i j
A

i j i j( , )
1

1
( ) ( ) ( , ), (11)

LCA [1] [1] [1],corr⎡
⎣⎢

⎤
⎦⎥

whereby we have introduced a short-hand notation for that part of the operator associated with
the correlations

   Ω Ω Ω Ω= + +i j i j i j i j( , ) ( , ) ( , ) ( , ). (12)
[1],corr [1],l [1],l † [1],q⎡

⎣⎢
⎤
⎦⎥

In the absence of correlations only the first term in the expansion of (8) does not vanish. At
medium internucleon distances ( ≳r 3ij fm) one has that →l i jˆ ( , ) 0 and the effective operator
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Ω LCA
equals the uncorrelated operator Ω . The applicability of the LCA method, which

involves a truncation of the effective operators to terms which are linear and quadratic in the
correlation operators, hinges on the local character of the SRC. LRC, for example, would
require an expansion which involves higher-order contributions.

The single-nucleon momentum distribution n p( )[1] quantifies the probability of removing
from the nuclear ground state a momentum p at ′⃗r1 and putting it instantly back at ⃗r1 for any
combination of ⃗ ′⃗( )r r, .1 1 Accordingly, n p( )[1] is connected to the expectation value of the
operator  ψ ψ⃗ ′⃗( ) ( )r r†

1 1 (the nucleon field operator ψ ′⃗( )r1 annihilates a nucleon at position ′⃗r1)

in the exact ground state Ψ. One can write ⃗ ≡ ∏ ⃗−
− =

=( )r rd { } dA
A i

i A
i

3( 1)
2 2

3

∫ ∫Ω

π
Ψ Ψ= ⃗ ′⃗ ⃗ ⃗ ⃗ ′⃗ ⃗′−

−
− ⃗ ⃗ − ⃗

− −( ) ( ){ }n p r r r r r r r( )
d

(2 )
d d d e * , , . (13)( )p A

A
p r r

A A
[1]

2

3
3

1
3

1
3( 1)

2
i ·

1 2 1 21 1

The corresponding single-nucleon operator n̂ p reads

∫∑ ∑ ∑
Ω

π
= = ⃗ ′⃗ =′

=

− ⃗ ⃗ − ⃗

= =
( )n

A
n r r n iˆ

1 d

(2 )
e ˆ , ˆ ( ). (14)( )

p

i

A
p p r r

i

A

p i i
i

A

p
1

2

3
i ·

1

[1]

1

[1]i i

The operator n̂ p and the expansion of (11) determine an effective two-body operator n̂ p
LCA

from which the correlated single-nucleon momentum distributions at momentum p can be
computed. The operator n̂ p

LCA can be evaluated in the IPM ground-state wave function. The
diagrams in figure 1 are a schematic graphical representation of the different contributions to
n p( )[1] after introducing the effective operator n̂ .p

LCA

In order to preserve the normalization properties ∫ =p p n pd ( ) 12 [1] in the LCA, the
normalization factor  of (1) is expanded up to the same order as the operator of (11)

∑ αβ αβ= + ∣ + + ∣
α β<


A

l l l l1
2 ˆ (1, 2) ˆ (1, 2) ˆ (1, 2) ˆ (1, 2) . (15)nas

† †
nas

Here, αβ∣ 〉nas is the uncoupled normalised and anti-symmetrized (nas) two-nucleon state in the
⃗ ⃗( )r r,1 2 -space. The summation ∑α β< extends over all occupied single-nucleon states. Those

states are identified by the quantum numbers α ≡ α α α αα
n l j m t ,j whereby αt denotes the isospin

projection.
In order to construct the IPM single-particle wave functions we adopt a harmonic

oscillator (HO) basis with a global mass-dependent parametrization

Figure 1. Diagrams (a)–(d) denote the different contributions to the n p( )[1] as it is
computed in the LCA. The solid lines denote nucleons in the single-particle state with
IPM quantum numbers α β …, , and the dotted lines are the correlation operators l̂ .
Diagram (a) is the IPM contribution to n p( ).[1] The other diagrams are the SRC
corrections. In the LCA we consider the diagrams that involve two nucleons and are
either linear ((b) and (c)) or quadratic (d) in the correlation operators.
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ωℏ = −− −A A45 25 . (16)1 3 2 3

In a HO basis, a transformation from ⃗ ⃗r r( , )1 2 to ⃗ = ⃗ − ⃗ ⃗ = ⃗ + ⃗r r r R( , )r r
12 1 2 12 2

1 2 for the nas two-
nucleon state can be readily performed [20, 28]

∑αβ αβ∣ = ∣ ∣D D , (17)
Dnas

nas

where we have introduced a shorthand notation for the quantum states of the pairs in the
⃗ ⃗( )r R,12 12 coordinate space

∣ ≡ ∣D nlSjm NLM TM, , . (18)j L T

Here, n and l are the radial and orbital angular-momentum quantum numbers corresponding
with the relative motion of the pair. The jm j are the quantum numbers of the total angular
momentum of the pair. The TMT S( ) determine the isospin (spin) quantum numbers of the
pair. The c.m. wave function is described by the quantum numbers NLM .L

Table 1 lists the computed values of the normalization factors of (15) for a range of
nuclei from 2H to 208Pb. The model dependence of the computed  is related to the choices
made with regard to the IPM basis and the correlation functions. Tests for a few nuclei
indicate that replacing the HO basis by a Woods–Saxon one changes the computed  by a
few percent. This is connected with the observation that the amount of close-proximity
nucleon pairs in a nucleus is rather insensitive to the choice of the single-particle wave
functions [20]. The sensitivity of the computed  to the choices with regard to the corre-
lation functions is larger. For example, after switching off the effect of spin–isospin corre-
lations we find a  which is about 5% smaller for 2H and about 10% smaller for the medium-
heavy and heavy nuclei listed in table 1.

The deviation of  from 1 can be interpreted as a quantitative measure for the total
effect of the SRC operators on the IPM ground-state wave function. For the deuteron, the
tensor correlation operator acting on the relative S-wave of the IPM nucleon pair wave
function is responsible for the D-wave component. The LCA is a crude approximation for the
proton–neutron deuteron system. Nevertheless, the tail part of the LCA deuteron momentum
one-body momentum distribution is in fair agreement with the realistic WCJ1 one [31], which
has a 7.3% D-wave admixture. The a A( H)2

2 coefficient is an experimentally determined
quantity which is connected with the magnitude of SRC in nucleus A relative to 2H [32, 33]. It
is extracted from the scaling behaviour of the measured ′ ′A e e e e( , ) H( , )2 cross-section ratio
in selected kinematics favouring virtual-photon scattering from correlated pairs. In figure 2,
the ratios of the computed norms for A relative to 2H

= −
−


( ) ( )

R A
A

H
( ) 1

H 1
, (19)2

2
2

Table 1. The norm  of (15) for a wide range of nuclei.

2H 1.128 40Ca 1.637
4He 1.327 48Ca 1.629
9Be 1.384 56Fe 1.638
12C 1.435 108Ag 1.704
16O 1.527 197Au 1.745
27Al 1.545 208Pb 1.741
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are compared to the measured a2 coefficients of [29]. In the framework developed in this
work, the R A( H)2

2 are a measure of the magnitude of the aggregated effect of SRC in
nucleus A relative to their magnitude in H.2 As can be appreciated from figure 2, the mass
dependence of the measured a2 and computed R A( H)2

2 ratios is roughly the same. For A
≲40, R A( H)2

2 increases strongly with mass number A which hints at a strong mass
dependence of the quantitative effect of SRC. For >A 40, the predicted mass dependence of
the magnitude of the SRC is soft.

Recently, it has been suggested that the magnitude of the European muon collaboration
(EMC) effect in a specific nucleus A is connected with the magnitude of the SRC in A [34].
Consequently, one can expect a linear relation between the R2 of equation (19) and the
magnitude − R

x

d

d
EMC of the EMC effect. This suggestion is clearly confirmed in figure 3 which

illustrates the correlation between the experimentally extracted − R

x

d

d
EMC and the LCA

Figure 2. The mass dependence of the computed ratios R A( H)2
2 defined in

equation (19) and of the experimentally extracted a A( H)2
2 coefficients from [29].

Figure 3. The measured magnitude of the EMC effect, − R

x

d

d
EMC is plotted as a function

of the computed R A( H)2
2 ratios defined in equation (19). The values of the EMC

magnitude are from the analysis presented in [30]. The fitted dashed line obeys the
equation − = ± + ± R A(0.033 0.035) (0.071 0.009) · ( H).R

x

d

d 2
2EMC
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predictions for the aggregated effect of SRC in nucleus A relative to 2H. Clearly, the observed
correlation does not imply causation.

3. Single-nucleon momentum distribution

In figure 4 we compare the LCA results for the n p( )[1] with those obtained with quantum
Monte-Carlo (QMC) methods using realistic two-nucleon and three-nucleon Hamiltonians
[4]. With the normalization factor of (15), the single-nucleon momentum distributions are
normalized as ∫= p p n p1 d ( ),2 [1] which facilitates the comparison over the various nuclei.

Up to the characteristic nuclear Fermi momentum =p 1.25F fm−1, the shape of n p( )[1] is
very Gaussian in both approaches. For >p pF the distributions are heavy-tailed. For ≳p 3
fm−1, the QMC and the LCA method predict a comparable exponential-like fat tail, which is
very remarkable given the very different frameworks in which the results are obtained. For
medium momenta ≈p 2 fm−1 the LCA predictions for the n p( )[1] undershoot the QMC
ones. This can be attributed to the lack of LRC in the LCA framework. Indeed, the effect of
LRC is known to extend to medium nucleon momenta [3, 12]. In the same vein, it is not
surprising that for 4He and 9Be the LCA and QMC display some differences at low p, given
that LCA does not account for the complicated long-range cluster structures of those nuclei.
In this context, it is worth mentioning that the nuclear-matter studies of [7] have clearly
illustrated that the fat tails of the single-nucleon distributions are sensitive to the adopted
realistic NN interaction. This is related to the fact that the short-range part of the NN force is
not well constrained by a fit to NN scattering data.

The LCA results for the n p( )[1] are displayed in figure 5 for a range of nuclei from He to
Ag. Some stylized features which apply to all studied nuclei are emerging from the LCA
calculations. For ≲p 1.5 fm−1 the distribution is dominated by the IPM contribution (dia-
gram (a) of figure 1) and the SRC do not affect the momentum dependence of n p( ).[1] The fat
tails are induced by the correlations (diagrams (b), (c) and (d) of figure 1) whereby one
distinguishes two regions. For 1.5 ≲ p ≲ 3 fm−1 the tensor correlations dominate. The effect
of the central correlations extends over a large momentum range and for >p 3.5 fm−1, it
represents the dominant contribution to n p( )[1] (with the tensor part gradually losing in
importance). For all nuclei the crossover between the tensor and the central correlated part of
the tail of n p( )[1] occurs at a momentum slightly larger than 3 fm−1. At momenta approaching
4 fm−1 the central correlations provide about half of the the n p( )[1] while the remaining
strength is almost exclusively due to the interference between the central and spin–isospin

Figure 4. The momentum dependence of the n p( )[1] for 4He,9Be and 12C. The red
crosses are the QMC results of [4] obtained with the Argonne v18 two-nucleon and
Urbana X three-nucleon potentials.

J. Phys. G: Nucl. Part. Phys. 42 (2015) 055104 J Ryckebusch et al
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correlations (not shown separately in figure 5). This qualitative behaviour is in line with the
ab initio 4He results of [4] (see figure 3 of that reference). The above-mentioned conclusions
which apply to the correlated part of the one-body momentum distributions of all nuclei
studied here, are qualitatively in line with the nuclear-matter results of [7]. This illustrates that
the effect of SRC on single-nucleon momentum distributions can be summarized in some
universally applicable principles.

The dominant role of the tensor correlations for intermediate nucleon momenta
≲ ≲p1.5 3 fm−1, has some important implications for the isospin dependence of the effect

of SRC. With the aid of (11) one can write

= + +n p n p n p n p( ) ( ) ( ) ( ), (20)pp nn pn
[1] [1] [1] [1]

with

∑δ δ αβ αβ= ∣ ∣
α β<

α βn p n( )
1

ˆ (1, 2) . (21)N N t N t N p
[1]

, , nas
LCA

nas1 2 1 2

Referring to figure 1, the n p( )N N
[1]

1 2
encodes how much the pp, nn and np pairs contribute to n[1]

at given p. The LCA results for n p( )N N
[1]

1 2
are shown in figure 6. The ratio

≡r p n p n p( ) ( ) ( )N N N N
[1] [1]

1 2 1 2
quantifies the relative contribution of N N1 2 pairs to n p( )[1] at

given momentum p. In a naive IPM one expects momentum-independent values of
= −

−r ,pp
Z Z

A A

( 1)

( 1)
= −

−rnn
N N

A A

( 1)

( 1)
and = −r .pn

NZ

A A

2

( 1)
For <p pF the plotted ratios in the bottom

panel of figure 6 very much follow these naive expectations. The tensor dominated
momentum range is characterized by an increase of the pn contribution to n p( ).[1]

The above discussion provides a natural explanation for the observation that SRC-
sensitive reactions like two-nucleon knockout ( ′A e e pN( , ) and A p ppN( , ) reactions for

Figure 5. The single-nucleon momentum distribution n p( )[1] for six nuclei. The long
dashed line is the full LCA result. The dashed–dotted line is the IPM contribution to the
LCA result. Also shown are the results of a calculation that only includes the two-body
central (green dotted line), tensor (purple solid line) and spin–isospin (orange short-
dashed line) correlation contribution. The LCA result includes the interference between
all contributions.

J. Phys. G: Nucl. Part. Phys. 42 (2015) 055104 J Ryckebusch et al

9



example) are very much dominated by the pn channel in the tensor-dominated region which
roughly corresponds with ≲ ≲p1.5 3 fm−1. The bottom panels of figure 6 suggest that under
those conditions the pn channel can represent 90% of the correlated strength, leaving a mere
5% for the pp channel. This prediction seems to be in line with the experimental observations.

Indeed, the small ratio of pp-to-np pairs above the Fermi momentum has been recently
established in 12C ′e e p p( , ( )), 27Al ′e e p p( , ( )), 56Fe ′e e p p( , ( )) and 208Pb ′e e p p( , ( )), mea-
surements at Jefferson lab [14, 36]. The quoted pp to pn ratio of ±

±
1 0.3 %

18 5 %
for 12C, displayed in

figure 6 is compatible with the LCA predictions thereby assuming that the pp and nn con-
tributions are equal for =N Z nuclei. From an analysis of the ratio p ppn

p pp

C( , )

C( , )

12

12
it could be

inferred that the removal of a proton from the nucleus with initial momentum 275–550
MeV c−1 is 92−

+
18
8 % of the time accompanied by a neutron [37]. Also this result is in line with

the LCA predictions for 12C contained in figure 6. Our results indicate that similar anom-
alously large r rpn pp ratios may be found for heavier nuclei when probing the tensor-domi-
nated tail of the single-nucleon momentum distribution.

Another interesting feature of the results of figure 6 is that the r p( )pp [r p( )pn ] reaches its
minimum (maximum) at ≈p 2 fm−1. For >p 2 fm−1 the r p( )pp grows and the r p( )pn

decreases. Experimental evidence supporting this prediction has been recently obtained in the
simultaneous measurement of exclusive 4He ′e e pp( , ) and 4He ′e e pn( , ) at ′e e p( , ) missing
momenta from 2 to 4.3 fm−1 [35]. In those measurements, the kinematics is tuned to probe a
nucleon at a given momentum >p pF in conjunction with its correlated partner. These are
precisely the SRC induced two-nucleon processes which systematically dominate the LCA

Figure 6. The top panels show the LCA results for the momentum dependence of the
contribution of pp pairs (n p( )pp

[1] ), nn pairs (n p( )nn
[1] ), and pn pairs (n p( )pn

[1] ) to the

n p( )[1] of 4He, 12C and 108Ag. The bottom panels show the momentum dependence of
the ratios =r n p n p( ) ( )N N N N

[1] [1]
1 2 1 2 for =N N pp nn pn, , .1 2 The data points for 4He are

extracted from the bottom panel of figure 2 in [35]. The data points for 12C are
extracted from [36]. For 4He and 12C the theoretical results for pp overlap almost
perfectly with those for nn. The arrows at =p 0 indicate the naive IPM predictions for
the r .N N1 2 The arrows at ≈p 4.5 fm−1 are the predictions for the rN N1 2 based on the

counting of the =nl 00 pairs (see text for more details).
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n p( )[1] above the Fermi momentum. One may be tempted to connect A ′e e pN( , ) cross-
sections to two-nucleon momentum distributions (TNMD). First, even after cross-section
factorization no direct connection between the cross-sections and TNMD can be established
[38]. Second, as has been pointed out in [3] (a nice pictorial description is given in figure 12
of that reference) the correlated part of the TNMD receives large SRC contributions from
three-nucleon configurations. Thereby the correlation is mediated through a third nucleon.
The exclusive A ′e e pN( , ) measurements are not kinematically optimized to probe those three-
nucleon configurations. The A ′e e pN( , ) kinematic settings are optimized to probe SRC-
related two-nucleon configurations, and it is precisely those configurations which are the
source of strength of the tails of the single-nucleon momentum distributions.

The 4He data points shown in figure 6 are extracted from the 4He ′e e pp( , )/4He ′e e pn( , )
cross-section ratios of [35], whereby we have assumed that =r r .nn pp The rnp and rpp cannot
be directly connected to the 4He ′e e pp( , )/4He ′e e p( , ) and 4He ′e e pn( , )/4He ′e e p( , ) cross-
section ratios also shown in figure 2 of [35]. Indeed, for >p pF the r p( )N N1 2 encodes infor-
mation about correlated pairs, whereas the 4He ′e e p( , ) cross-sections also contain contribu-
tions from other sources like final-state interactions and triple correlations.

For >p pF the ratio
+

r p

r p r p

( )

( ) ( )

pn

pn pp
can be interpreted as the ratio of the number of SRC

proton–neutron pairs to the sum of the proton–neutron and proton–proton ones at a
momentum p. In [14] this ratio has been extracted from the combination of ′A e e pp( , ) and

′A e e p( , ) measurements for the nuclei 12C, 27Al, 56Fe and 208Pb. The experimental values for
the ratios are ≈0.95 for the four nuclei and are extracted over a bin covering the range

⩽ ⩽p1.5 4.5 fm−1. Our calculations, reproduce the observations that for >p pF the

+
r p

r p r p

( )

( ) ( )

pn

pn pp
are rather mass independent and adopt a value indicative of the dominance of the

proton–neutron SRC pairs.
As the central correlations, which are blind for the isospin of the interacting pairs, gain in

importance with increasing p one observes in figure 6 that the r p( )N N1 2 ratios gradually
approach a limiting value which is different from the IPM values, in particular for heavier
nuclei.

The above discussions indicate that the LCA framework in combination with central,
tensor and spin–isospin correlations, captures the stylized features of the SRC including its
mass and isospin dependence. We now wish to shed light on the underlying physics
mechanics of the correlated part of the momentum distribution. More in particular we address
the question: ‘What are the quantum numbers of the IPM pairs which are most affected by the
correlations?’ This discussion will lead to an understanding of the high p limits in the bottom
panels of figure 6.

One can determine the contributions from the relative quantum numbers nl of the IPM
pairs to the correlated part of n p( )[1] (denoted by n p( )[1],corr ) by means of the expansion
of (17). One finds

∑ ∑ αβ

αβ δ δ δ δ

= ∣

∣ ∣ ∣

′ ′

′ ′

α β<

n p D

E D n E

( )

ˆ (1, 2) , (22)

nl n l
D E

nn ll n n l l p

,
[1],corr

,
nas

†

nas
[1],corr

D D E E

⎡⎣ ⎤⎦

where the operator n̂ (1, 2)p
[1],corr and the states ∣ 〉 ∣ 〉E D, have been defined as in (12) and (18).

Obviously, one has
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∑∑ =
′ ′

′ ′n p n p( ) ( ). (23)
nl n l

nl n l,
[1],corr [1],corr

The ′ ′n p( )nl n l,
[1],corr that provide the largest contribution to n p( )[1] are shown in figure 7. It is

clear that correlation operators acting on =nl 00 IPM pairs are responsible for the major
fraction of the n p( )[1] for ≳p 2 fm−1. For heavier nuclei, the contributions from pairs with

>n 0 and =l 0 gain in importance. Non-diagonal ′ ′n pˆ ( )nl n l,
[1],corr represent a small fraction of the

high-momentum tail.
We wish to stress that correlation operators acting on IPM pairs can change the quantum

numbers. For example, the tensor operator acting on the deuteronʼs =l 0 IPM pair generates
the correlated l = 2 state. The dominant role of =nl 00 IPM pairs in the creation of high-
momentum components, provides support for our proposed method to quantify the SRC by
counting the number of =nl 00 IPM pairs [20, 28, 38]. Consequently, for high p the central
correlations dominate and the r p( )N N1 2 ratios of figure 6 are connected with the amount of
N N1 2 IPM pairs with =nl 00. Using the computed number of of =nl 00 pairs in 12C we find

= =r r 0.16pp nn and =r 0.68.pn For 108Ag, a similar calculation leads to =r 0.14,pp

=r 0.20nn and =r 0.66.pn For high p these numbers are fair predictions for the computed
ratios r p( )N N1 2 in figure 6. The dominant role of the =nl 00 pairs in generating the high-
momentum components of the single-nucleon momentum distributions provides also a natural
explanation for the observation that the high-momentum tail of the single-nucleon momentum
distributions of nuclei has a universal shape. Indeed, the wave function for the =nl 00 pairs
does not dramatically change as one moves through the nuclear mass table.

4. Single-nucleon kinetic energies and rms radii

We now turn to a discussion of the LCA predictions for the single-nucleon kinetic energies
TN and rms radii. The TN are not observables but the LCA results can be compared with

previously published ones. In addition, in recent publications [39, 40], the isospin dependence
of the TN has been connected with the kinetic part of of the nuclear symmetry energy,
which is one of the key bulk properties of atomic nuclei. In a non-relativistic framework, the
diagonal single-nucleon kinetic energy operator T [1]

can be written as

  ∑ ∑= = −ℏ

= =

T T i
M

( )
2

, (24)
i

A

i

A

i
i

[1]

1

[1]

1

2
2

whereMi is the nucleon mass. In the IPM, the average kinetic energy Tp per proton is given
by

∑δ α α= ∣ ∣
α

αT
Z

T
1

(1) . (25)p t p
IPM

,
[1]

A similar definition is adopted for the average kinetic energy per neutron T .n In the LCA
framework developed in section 2 one has

∑ αβ αβ= ∣ ∣
α β<T

Z
T

1 1
(1, 2) , (26)p p

LCA
nas

LCA
nas

where the operator Tp
LCA

can be obtained from (11). Since we work in a non-relativistic
framework, we have adopted a hard cutoff of 4.5 fm−1 for the maximum nucleon momentum
in the calculations of the kinetic energy.
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Table 2 compares the IPM and LCA predictions for the kinetic energies per proton and
neutron. Obviously, as the kinetic energies can be associated with the fourth moments of the
n p( ),[1] they are highly sensitive to its fat tails. Indeed, inclusion of the correlations increases
the Tp and Tn by a factor of about two. For the sake of reference, the average kinetic
energy of a one-component nuclear Fermi gas is 21MeV. For the heaviest nuclei studied in
this work we find values which are about 50% larger. The LCA results for the average kinetic

Figure 7. The momentum dependence of the n p( )[1] for six nuclei. The red dashed line
is the LCA result. The blue dashed–dotted line is the IPM contribution to the LCA
result. Also shown are the ′ ′n p( )nl n l,

[1],corr that dominate the high momentum tail. The

purple dashed line is the summed contribution of the the ′ ′n p( )nl n l,
[1],corr which are not

shown separately.

Table 2. Results from the IPM and LCA framework for the kinetic energy per proton
and neutron ( Tp and Tn ) for a variety of nuclei. We compare to values obtained for

the average correlated kinetic energy per nucleon TN from alternate calcula-
tions [43, 44].

TN (MeV) T Tp n

A =xp
Z

A
IPM (p) IPM (n) LCA (p) LCA(n) [43] [44] IPM LCA

2H 0.500 14.95 14.93 20.95 20.91 1.00 1.00
4He 0.500 13.80 13.78 25.28 25.23 19.63 1.00 1.00
9Be 0.444 15.81 16.58 28.91 27.33 0.95 1.06
12C 0.500 16.08 16.06 28.96 28.92 32.4 22.38 1.00 1.00
16O 0.500 15.61 15.59 29.48 29.43 30.9 23.81 1.00 1.00
27Al 0.481 16.61 16.92 30.93 30.26 25.12 0.98 1.02
40Ca 0.500 16.44 16.42 31.23 31.18 33.8 27.72 1.00 1.00
48Ca 0.417 15.64 17.84 33.04 30.06 27.05 0.88 1.10
56Fe 0.464 16.71 17.45 32.33 31.13 32.7 0.96 1.04
108Ag 0.435 16.48 17.81 33.55 31.16 0.93 1.08
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energies for 9Be are comparable to those of realistic calculations quoted in table 1 of [41]—
=T 29.82p MeV and Tn =27.09 MeV. As can be appreciated from table 2, the LCA

predictions for the correlated kinetic energies TN are comparable with those of the realistic
model of [43]. The predictions for TN from the variational calculations of [44] are sys-
tematically smaller. The 16O kinetic energies reported in [23]—obtained using the same spin–
isospin and tensor correlation functions as used here—, are about 10% larger than those from
the LCA approach (33.7 and 33.8 MeV, compared to 29.4 and 29.5MeV). Part of this
discrepancy can be attributed to the fact that we have imposed a hard momentum cutoff at
4.5 fm−1 and this is not present in the calculations of [23]. Incrementing the hard momentum
cutoff to 6.0 fm−1, which completely invalidates the use of a non-relativistic framework,
increases the LCA predictions for the TN with about 15%.

The parameter =xp
Z

A
is the proton fraction and is a measure for the asymmetry of

nuclei. As expected for a non-interacting two-component Fermi system, <T Tp n for
asymmetric nuclei ( <x 0.5p ) in the IPM. As can be appreciated from figure 8 after inclusion
of the correlations, the situation is reversed with the minority component having a larger
average kinetic energy. This can be attributed to the tensor correlations, which are stronger
between pn than between pp and nn pairs. The difference between Tp and Tn increases
roughly linearly with decreasing proton fraction xp. For the most asymmetric nucleus con-
sidered here, 48Ca, Tp is about 10% larger than T .n

We now discuss the effect of the correlations on the rms radii of the nuclear matter
distribution. The rms radii can be computed with an operator of the form

 ∑= ⃗ − ⃗( )r
A

r R
1

, (27)
i

i
2

cm
2

with ⃗ = ∑ ⃗R r .
A i icm
1 Using a procedure which is completely similar to the one used for the

kinetic energy, in the LCA the operatorr2 becomes a correlated operator with a one-body and
a two-body part. Table 3 compares the IPM and the LCA predictions for the rms radii. The
IPM predictions which are obtained with the global parametrization of (16) tend to
overestimate the measured radii for light and heavy nuclei, and underestimate them for mid-
heavy nucleus. All in all, the effect of the correlations on the computed rms radii is rather
modest. Inclusion of the correlations reduces the rms radii bij 8–12%. The reduction factor is

Figure 8. The IPM and LCA predictions for the T Tp n as a function of the proton

fraction xp.
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hardly dependent on the atomic mass number. Central correlations introduce an exclusion
zone around each nucleon and are therefore expected to increase the computed rms radii. The
dominant role of the other correlations and the effect of the normalization (which is reflected
in the 

1 factor in the effective operator) are at the origin of the modest reduction for the rms
radii after including the SRC in the LCA framework. The LCA predictions for the rms radii
are in acceptable agreement with the experimental values and the predictions from the UCOM
framework of [44]. We stress that our IPM results are obtained with a single Slater
determinant with HO wave functions from the global parametrization of equation (16). It is
likely that one can find a slightly modified parametrization that brings the LCA rms radii
closer to the data.

5. Summary

We have introduced an approximate method, dubbed LCA, for the computation of the SRC
contributions to the single-nucleon momentum distributions n p( )[1] throughout the whole
mass table. A basis of single-particle wave functions and a set of correlation functions serves
as an input to LCA. For the numerical calculations presented here, we have included the
central, spin–isospin and tensor correlations and mass-independent correlation functions. The
LCA method predicts the characteristic high-momentum part of the single-nucleon momen-
tum distribution for a wide range of nuclei. For the light nuclei 4He, 9Be and 12C, the LCA
predictions for the tails of the single-nucleon momentum distributions reproduce the stylized
features of the QMC ones obtained with realistic Hamiltonians. The predicted aggregated
effect of SRC and its mass dependence closely matches the observations from inclusive
electron scattering (a2 coefficients and the magnitude of the EMC effect).

In the LCA, one can separate contributions of the central, spin–isospin and tensor cor-
relations and study how these affect the relative strength of nn, pp and pn pairs in the high-
momentum tail of n p( ).[1] For ≲ ≲p1.5 3 fm−1 the n p( )[1] is dominated by tensor-induced
pn correlations. Our prediction for the relative strength of pp and pn pairs in the tail part of
n p( )[1] is in line with observations in exclusive two-nucleon knockout studies which point at a
strong dominance of np SRC pairs over the pp SRC pairs. We have shown that the high-
momentum tail of n p( )[1] is dominated by the correlation operators acting on mean-field pairs

Table 3. Results from the IPM and LCA framework for the rms radii for a variety of
nuclei. The results are compared with those from the unitary correlation operator
method (UCOM) [44] and experimental values (expt) [42]. All radii are in fm.

A IPM LCA UCOM [44] Expt [42]

4He 1.84 1.70 1.35 1.6755 ± 0.0028
9Be 2.32 2.13 2.5190 ± 0.0120
12C 2.46 2.23 2.36 2.4702 ± 0.0022
16O 2.59 2.32 2.28 2.6991 ± 0.0052
27Al 3.06 2.72 2.82 3.0610 ± 0:0031
40Ca 3.21 2.84 2.93 3.4776 ± 0.0019
48Ca 3.47 3.05 3.20 3.4771 ± 0.0020
56Fe 3.63 3.20 3.7377 ± 0:0016
108Ag 4.50 3.94 4.6538 ± 0.0025
197Au 5.73 5.21 5.4371 ± 0.0038
208Pb 5.83 5.28 5.5012 ± 0.0013
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with vanishing relative radial quantum number and vanishing orbital angular momentum,
i.e. IPM pairs in a close-proximity configuration. Another prediction of the LCA is that in
asymmetric nuclei, the correlations are responsible for the fact that the average kinetic energy
of the minority nucleons is larger than for the majority nucleons. The LCA method provides
results for the correlated average kinetic energies and nuclear radii which are in line with
those of alternate approaches.
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