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Abstract – We investigate the competition between pairing correlations and ferromagnetism in
small metallic grains in the presence of a Zeeman field. Our analysis is based on the universal
Hamiltonian, valid in the limit of large Thouless conductance. We show that the coexistence
regime of superconducting and ferromagnetic correlations can be made experimentally accessible
by tuning an external Zeeman field. We compare the exact solution of the model with a mean-field
theory and find that the latter cannot describe pairing correlations in the intermediate regime. We
also study the occurrence of spin jumps across the phase boundary separating the superconducting
and coexistence regimes.
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Introduction. – The hallmark of the BCS model of
superconductivity in metals is the presence of an exci-
tation gap ∆. This gap is caused by the formation of
Cooper pairs describing correlated electron pairs in time-
reversed states. Thus, pairing correlations in superconduc-
tors tend to minimize the total spin of the electron system.
Ferromagnetic correlations, on the other hand, prefer to
maximize the total spin and form a macroscopic magnetic
moment. Early work [1–5] predicted a state in which both
pairing and ferromagnetic order are present, if ferromag-
netism is caused by localized paramagnetic impurities.
The experimental observation that both states of matter
can coexist in heavy-fermions systems [6–8] and high-Tc
superconductors [9,10] came as a surprise and led to the
search for new theoretical models to describe this coexis-
tence. A BCS-like model of s-wave pairing combined with
a simple Stoner-like model of ferromagnetism was used
to derive such an intermediate state within a mean-field
approximation [11]. However, it was argued that such a
state is unstable in the bulk [12–14]. Furthermore, it was
shown that a proper Hartree-Fock mean-field theory of the
model does not support coexistence of s-wave supercon-
ductivity and ferromagnetism [15,16].
A similar model of BCS-like pairing and exchange inter-

action, known as the universal Hamiltonian, was shown
to be valid in small metallic grains in the mesoscopic
regime for a Thouless energy ET that is large compared

with the single-particle mean-level spacing δ [17,18]. In
such a finite-size system, a partially paired state with
finite spin polarization exists within a narrow parame-
ter regime [19]. Since this coexistence regime is relatively
small, it would be difficult to observe it experimentally. It
has been suggested that the probability of spin polariza-
tion in the presence of pairing correlation may be enhanced
by mesoscopic fluctuations [20] or by an asymmetric spin-
dependent bandwidth of the single-particle spectrum [19].
Here we study the competition between ferromagnetic

and pairing correlations in metallic grains in the crossover
regime from a few-electron system (∆� δ) to the bulk
(∆� δ). While a strong-coupling phase whose fluctuation
properties are different from the universal Hamiltonian
was derived in ref. [21], here we assume the weak coupling
limit in which the universal Hamiltonian description
is valid. We use Richardson’s solution of the BCS-like
interaction [22] and the known solution of the exchange
model [23] to determine the ground state of the grain. For
sufficiently small grains, there is a regime in pairing gap
∆/δ and exchange coupling Js/δ, in which the ground
state is partly paired and partly polarized. We show that,
in the presence of a Zeeman field, the exchange coupling
at which the crossover from a pure superconducting
state to the coexistence regime takes place decreases to
values that can be realized in several metals. The onset
of magnetization with increasing exchange coupling at
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a given pairing gap corresponds to a spin jump ∆S � 1,
followed by successive spin increments of ∆S = 1. The
magnitude of the initial spin jump depends on the value of
∆/δ. Similar spin jumps were found in the crossover from
a superconducting state to a paramagnetic state [24,25],
where they are reminiscent of a first-order transition in
the bulk. We apply a mean-field theory similar to the one
used in ref. [25] and compare with the exact results. In
contrast to the exact solution, we find that the mean-field
approximation cannot describe pairing correlations in the
intermediate regime of partial spin polarization.

Model. – An isolated metallic grain in which the
single-particle dynamics are chaotic (or diffusive) and
whose dimensionless Thouless conductance gT =ET /δ is
large (gT � 1), can be described by an effective universal
Hamiltonian [17,18]

Ĥ =
∑
kσ

εkc
†
kσckσ −GP̂ †P̂ −JsŜ2+ gµBHŜz . (1)

Here c†kσ is the creation operator for an electron in the
single-particle level εk with either spin up (σ=+) or
spin down (σ=−). The one-body term in (1) describes
the kinetic energy plus confining single-particle potential.
The second term on the r.h.s. of eq. (1) is a pairing

interaction with strength G and where P † =
∑
i c
†
i+c
†
i−

is the pair creation operator. The third term in (1) is an
exchange interaction expressed in terms of the total spin
operator Ŝ= 12

∑
kσσ′ c

†
kστσσ′ckσ′ (τi are Pauli matrices).

The parameter Js is the exchange coupling constant
(estimated values of Js for a variety of materials were
tabulated in ref. [26]). The inclusion of such an exchange
interaction in quantum dots [27] explained quantitatively
the measured peak height and peak spacing statis-
tics [23,28]. The last term on the r.h.s. of eq. (1) describes
the coupling of an external Zeeman field H (applied in
the z-direction) to the spin of the dot. Here g is the
g-factor of the electrons in the grain (taken to be positive)
and µB is the Bohr magneton. Orbital diamagnetism can
be neglected for small grains [25]. The charging energy
e2N̂2/2C (C is the capacitance of the grain) is a constant
for a grain with a fixed number of electrons N and was
omitted in the Hamiltonian (1).
In this work, we do not consider mesoscopic effects

that originate in the random matrix description of the
single-particle Hamiltonian. To construct a typical phase
diagram of a single grain, we consider a generic equidistant
spectrum εk = kδ with −No � k�No at half-filling. Thus
we have N = 2No for an even number of electrons (p= 0)
and N = 2No+1 for an odd number (p= 1).

Exact solution. – In the absence of a pairing inter-
action (G= 0), the Hamiltonian (1) can be solved in
closed form [23]. The orbital occupations n̂k = n̂k++ n̂k−
commute with Ŝ2 and are good quantum numbers. The
empty (nk = 0) and doubly occupied (nk = 2) orbitals do
not contribute to the total spin, so the total spin of the
grain is obtained by coupling the singly occupied levels

with spin 1/2 to total spin S and spin projection M . For
a specific set B of b singly occupied levels, the total spin
ranges from S = p/2 to S = b/2 with each spin value having

a degeneracy of db(S) =
(

b
S+b/2

)− ( b
S+1+b/2

)
. A complete

set of eigenstates is then given by |{nk}, γ, S,M〉 where γ
denotes a set of quantum numbers distinguishing between
eigenstates with the same spin and orbital occupation
numbers [23,29].
The pairing interaction can only scatter time-reversed

pairs from doubly occupied to empty orbitals but does not
affect the singly occupied levels (referred to as “blocked”
levels). It is therefore sufficient to diagonalize the reduced

BCS Hamiltonian
∑
kσ εkc

†
kσckσ −GP †P using the single-

particle subspace U of empty and doubly occupied levels.
This problem was solved by Richardson [22]. The eigenen-
ergies are given by

Em =
m∑
µ=1

Eµ , (2)

where Eµ are parameters that characterize the eigenstate
and m= (N − b)/2 is the number of pairs. Richardson’s
parameters Eµ are found by solving the set of m coupled
non-linear equations

1

G
+2

m∑
ν=1
ν �=µ

1

Eν −Eµ =
∑
i∈U

1

2εi−Eµ (µ= 1, . . . ,m) . (3)

For each set of m doubly occupied levels at G= 0, there
is a unique solution for Richardson’s parameters at G �= 0.
We solve eq. (3) using the method of ref. [30].
The eigenstates constructed from the subset U of empty

and doubly occupied levels have spin zero, so the total spin
S of the grain is determined by the spin-(1/2) coupling of
the singly occupied levels in B. The eigenstates of the full
Hamiltonian (1) are then given by |B, {Eµ}, γ, S,M〉 with
energies of

E =Em+
∑
k∈B

εk −JsS(S+1)+ gµBHM . (4)

In this work, we focus on the ground state of the grain
as a function of the interaction couplings G and Js. To
that end, we find the lowest energy E(S) in (4) for a given
spin S and then minimize E(S) with respect to S.
The energy E(S) is determined by choosing the set
B of b= 2S singly occupied levels to be closest to the
Fermi energy and then solving for the lowest Richardson’s
state in the remaining N − b levels. To show that this
choice of B provides the lowest-energy solution for a given
spin, we calculated the energy cost ∆E(S) to promote an
electron in the highest singly occupied level one level up.
This energy cost is shown in fig. 1 as a function of ∆/δ
for S = 1/2, 1 and 3/2. While pairing correlations reduce
∆E(S), the latter remains positive for all values of ∆/δ.
The physical parameter describing the pairing Hamil-

tonian is ∆/δ, where ∆ is the bulk pairing gap and δ the
single-particle mean-level spacing. The low-energy spec-
trum of the grain (for Js =H = 0) is determined by the
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Fig. 1: The energy cost ∆E(S) (in units of δ) to promote an
electron one level up from the highest singly occupied level,
when the starting state is the lowest state of (1) with b= 2S
singly occupied levels chosen closest to the Fermi energy.

value of this parameter. We can truncate the total number
of levels from No to Nr <No, and renormalize G such
that the low-energy spectrum of the grain remains approx-
imately the same. For a picket fence spectrum, the renor-
malized coupling constant is given by

Gr

δ
=

1

arcsinh
(
Nr+1/2
∆/δ

) . (5)

Strictly speaking, this holds in the absence of an exchange
interaction. However, since the exchange interaction
affects only the blocked levels, we expect the renormal-
ization (5) to hold as long as the number of blocked levels
is small compared with the total number of levels in
the band. The quality of this renormalization procedure
depends on the choice for Nr and was discussed in detail
in ref. [31].

Mean-field approximation. – We compare the find-
ings based on the exact solution with a mean-field theory.
The mean-field approach is based on a trial wave function
of the form [25]

|ψS〉=
∏
k∈B

c†k−
∏
j∈U

(
u
(S)
j + v

(S)
j c†j+c

†
j−
)
|0〉 (6)

with the normalization condition (u
(S)
j )

2+(v
(S)
j )

2 = 1.
The wave function ψS has b= 2S singly occupied levels
with spin-down electrons (set B) chosen to be closest to the
Fermi energy, and is of the BCS form within the remaining
set of levels U . The lowest state with spin S is found by
minimizing the expectation value 〈ψS |(Ĥ −µN̂)|ψS〉 with
respect to the variational parameters v

(S)
j . Here µ is a

chemical potential ensuring that the average number of
particles is N .
The mean-field energy at fixed spin S is given by

Emf (S) = 2
∑
k∈U

εk

(
v
(S)
k

)2
− ∆

2
S

G

+
∑
k∈B

εk −JsS (S+1)− gµBHS , (7)

where

(
v
(S)
k

)2
=
1

2


1− εk −µ√

(εk −µ)2+∆2S


, (8)

and ∆S is a spin-dependent pairing gap. The gap parame-
ter and chemical potential are determined by solving the
gap equation together with the particle number equation

2

G
=
∑
k∈U

1√
(εk −µ)2+∆2S

, (9a)

N = 2
∑
k∈U

(
v
(S)
k

)2
+ b . (9b)

For an equidistant spectrum, the chemical potential can
be determined by symmetry considerations and is given
by µ=−(1− p)δ/2 for Noδ�∆S .
Here, we used the same approximations as in ref. [25]

and neglected a term in the energy Emf (S) which is

proportional to (v
(S)
j )

4. The result (7) is in agreement with
the leading term of an expansion in the inverse number of
electrons 1/N [32]. Comparing (7) and (4) with M =−S,
we see that the exchange and Zeeman terms are treated
exactly in this mean-field approximation. The ground-
state spin in the mean-field approximation is found by
minimizing Emf (S) in (7) with respect to S.

Ground-state phase diagram. – The ground-state
spin of the grain is determined by the competition between
various terms in the universal Hamiltonian. The one-
body part (kinetic plus confining one-body potential)
and pairing interaction favor minimal spin S = p/2, while
exchange interaction and Zeeman field favor a maximally
polarized state. We have studied the ground-state spin as a
function of the three parameters ∆/δ, Js/δ and gµBH/δ.
Using the exact solution, we find three different phases:
a superconducting phase where the number of pairs is
maximal and S = p/2, a ferromagnetic phase where the
system is fully polarized S =N/2 (all electrons are with
spin down), and an intermediate regime. The intermediate
regime describes a partially polarized state S <N/2, in
which b= 2S electrons reside in singly occupied levels
closest to the Fermi energy and the remaining electrons
are paired to give spin zero.
The phase diagram in the ∆/δ-Js/δ plane of a grain

with even number of electrons and in the absence of a
Zeeman field (H = 0) is presented in fig. 2(a). For weak
pairing, the superconducting and ferromagnetic phases
are separated by an intermediate regime. The boundaries
of this intermediate regime are described by two critical

values J
(1)
s and J

(2)
s of the exchange interaction that are

function of ∆/δ. The critical value J
(1)
s /δ is a monotoni-

cally increasing function of ∆/δ, i.e., a stronger exchange
interaction is required to polarize a grain with stronger

pairing correlations. However, J
(2)
s /δ is almost insensitive

to ∆/δ. The intermediate regime shrinks at larger ∆/δ
and eventually disappears above ∆/δ ∼ 3. For stronger
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Fig. 2: Ground-state phase diagram in the Js/δ-∆/δ plane
for an even number of electrons (N = 50). Left panel: exact
results. Right panel: mean-field approximation (see text). The
phase diagrams show a superconducting (SC) phase and a
ferromagnetic (FM) phase. The exact phase diagram also
exhibits an intermediate regime (SC-FM) in which the ground
state is partially polarized but still has pairing correlations.
The intermediate regime in the mean-field phase diagram
describes a state that is a partially polarized state but does
not include pairing correlations. In particular, the dashed line
separates an S = 0 SC phase from an S = 0 phase with no
pairing correlations. The numbers shown in the intermediate
regime are the spin values in the corresponding sectors.

pairing correlations, the superconducting phase makes
a direct transition to the ferromagnetic phase. In this
regime (not shown in fig. 2), the phase boundary exhibits
a strong dependence on the bandwidth No.
For comparison, we show the mean-field results in

fig. 2(b). We observe that the mean-field results are qual-
itatively different from the exact solution. The region to
the right of the thick solid line and dashed line describes
a superconducting phase with ∆0 �= 0. However, there is
no superconducting solution (i.e., ∆0 = 0) for ∆/δ � 0.28.
Furthermore, in each of the partially polarized regions
with spin 0<S <N/2, the corresponding pairing gap
vanishes ∆S = 0 and no pairing correlations are present in
the mean-field wave function. While solutions of ∆S �= 0
exist for large values of ∆/δ, the actual ground state
at such values of ∆/δ is a higher spin state with no
pairing correlations. For example, a solution with ∆1 �= 0
exists only for ∆/δ > 2.1 [25]. However, at this strength
of pairing correlations we observe a direct transition from
S = 0 to S = 4 with ∆S = 0 as the energy of the lowest
S = 4 state with no pairing correlations is lower than the
paired S = 1 state. As a result, the boundaries which sepa-
rate different spin phases are flat, i.e., independent of
the pairing strength. In fact, in the mean-field approxi-
mation the ground-state wave function is a Slater deter-
minant through the whole intermediate regime of partial
spin polarization. Thus no coexistence of pairing and spin
polarization is observed within the mean-field approach.
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Fig. 3: Phase diagrams in the Js/δ-∆/δ plane at a fixed Zeeman
field gµBH = 0 (top panels) and gµBH/δ= 2.6 (bottom panels)
for an even grain (left panels) and for an odd grain (right
panels). The numbers denote the spin in each sector.

In contrast, the exact solution shows that pairing
correlations are present as long as the system is not fully
polarized. This can be seen in the shift of the spin tran-
sition lines to higher values of the exchange interaction
strength as the pairing gap ∆/δ is increased. Thus, the
exact solution predicts a regime in which pairing corre-
lations and spin polarization coexist. In the following, we
only discuss results obtained from the exact solution.
More detailed phase diagrams for H = 0 are shown in

the top row of fig. 3 for both grains with even (panel (a))
and odd (panel (b)) number of electrons. For weak pairing
we observe an odd-even effect (in number of electrons).

In particular, the critical value J
(1)
s is larger for the odd

grain, even though the presence of a blocked level in the
odd superconducting phase weakens pairing correlations
in the odd grain. This is because increasing the spin from
1/2 to 3/2 in the odd grain costs more one-body energy
than increasing the spin from 0 to 1 in the even grain.
The phase boundaries for a finite Zeeman field

gµBH/δ = 2.6 are shown in the bottom row of fig. 3.
The effect of a Zeeman field is twofold. First, it helps

polarizing the grain, making the value of J
(1)
s for a

given pairing gap smaller. Second, at given exchange
strength Js/δ, it increases the critical value of ∆/δ at
which partial spin polarization is destroyed. Both effects
together increase the size of the intermediate regime in
the ∆/δ-Js/δ plane.

Spin jumps. – As we increase the exchange coupling
constant Js/δ at fixed ∆/δ and Zeeman field, the spin
increases by discrete steps from its minimal value S = p/2
to its maximal value of S =N/2. In the absence of pairing
(∆= 0), the transition from spin S to spin S+1 occurs
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Fig. 4: Phase diagrams in the Js/δ-gµBH/δ plane at fixed
∆/δ= 0 (top row) and ∆/δ= 2 (bottom row) for an even grain
(left column) and for an odd grain (right column). Numbers
denote the spin in each sector.

for an exchange coupling of

Js/δ=
(2S+1)− gµBH/δ

2S+2
at ∆= 0 . (10)

The corresponding ∆= 0 phase diagrams in the Js/δ-
gµBH/δ plane are shown in figs. 4(a) and (b) for even and
odd grains, respectively. In particular, the phase bound-

aries are given by J
(1)
s = δ(p+1)/(p+2)− gµBH/(p+2)

and J
(2)
s = δ(N − 1)/N − gµBH/N . The ground-state spin

increases as a function of Js in steps of ∆S = 1. An
interesting qualitative change in the presence of pairing
correlations is the possibility of a spin jump ∆S > 1. For
∆/δ < 0.6, the ground-state spin still increases in steps of
∆S = 1 vs. Js. However, for 0.6<∆/δ < 0.8, the ground-
state spin jumps from 0 to 2 for a value of the exchange
coupling in the range 0.87<Js/δ < 0.9. The size of the
first-step spin jump gets larger with increasing ∆/δ. All
subsequent steps are of size one (see fig. 3(a)).
Similar spin jumps were observed when superconduc-

tivity breaks down due to the presence of a large external
Zeeman field [25]. The experimental findings were qualita-
tively explained using the mean-field theory we discussed
previously (but without the inclusion of an exchange inter-
action). It was concluded in ref. [25] that the first-order
phase transition from a superconductor to a paramagnet,
observed in thin films, is “softened” in metallic grains.
Here we observe that spin jumps also occur in the pres-
ence of exchange correlations. In the absence of an external
Zeeman field, these spin jumps are predicted to occur at
exchange coupling values of Js/δ > 0.87. Such exchange
coupling values are significantly larger than the values for
most metals (see fig. 9 in ref. [26]). Moreover, the exchange
strength is an intrinsic material property and is difficult
to tune experimentally.
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J
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/δ
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(a)

Fig. 5: Ground-state spin vs. exchange coupling Js/δ for an
even grain at a fixed Zeeman field strength gµBH = 0 (top
panel) and gµBH/δ= 2 (bottom panel). Solid lines correspond
to a grain with no pairing correlations ∆/δ= 0. The dashed
lines describe staircase functions with a spin jump of ∆S = 2
for ∆/δ= 0.7 (top) and ∆/δ= 2 (bottom). The dotted lines
correspond to staircases with a spin jump of ∆S = 3 for ∆/δ=
0.9 (top) and ∆/δ= 2.3 (bottom).

The regime of spin jumps can be tuned to lower and
more typical values of Js by applying an external
Zeeman field. We have already seen in figs. 3(c) and (d)
that a relatively weak Zeeman field increases the size of
the intermediate regime. It also means that spin jumps
can be observed at smaller values of the exchange strength
that are accessible to experiments. This is demonstrated
in figs. 4(c) and (d) where phase diagrams in the Js/δ-
gµBH/δ plane are shown for a given pairing gap of
∆/δ = 2. For example, a Zeeman field of gµBH/δ ≈ 2 is
sufficient to lower the critical exchange strength for the
0→ 2 spin jump to Js/δ≈ 0.55 at ∆/δ = 2 (see fig. 4(c))
as compared to Js/δ= 0.89 at ∆/δ = 0.7 without a
Zeeman field (see fig. 3(a)).
The idea of a Zeeman-field tuning of the values

of exchange coupling where spin jumps occur is best
illustrated in fig. 5, where spin staircase functions are
shown vs. Js/δ. In the presence of pairing correlations
and in the absence of a Zeeman field, the ground-state
spin staircase is shifted to the right and compressed as
∆/δ increases (see fig. 5(a)), reflecting the fact that the
intermediate region shrinks (see figs. 3(a) and (b)). For
an even grain with ∆/δ = 0.7, a spin jump of ∆S = 2
sets in at Js ≈ 0.89δ, while for ∆/δ= 0.9, a spin jump of
∆S = 3 occurs at Js ≈ 0.92δ. For a finite Zeeman field
of gµBH/δ = 2, the spin staircase functions that exhibit
similar spin jumps are shifted to smaller values of the
exchange strength but larger values of the pairing gap
(see fig. 5(b)). Spin jumps of ∆S = 2 (∆S = 3) occur at
Js/δ= 0.55 (Js/δ= 0.64) and ∆/δ = 2 (∆/δ = 2.3).
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In the relevant experimental situation of a fixed
exchange interaction strength, the critical value of ∆/δ at
which spin jumps occur as well as the size of these jumps
increase at larger values of gµBH/δ. The ratio ∆/δ (for
the given metal) can be made larger by studying a larger
grain, hence reducing the mean level spacing δ.
As an example, niobium has an exchange interaction

strength of Js/δ ≈ 0.4 [26]. Without an external Zeeman
field, the ground-state spin will be minimal (S = p/2) at
all values of ∆/δ (see figs. 3(a) and (b)). At a Zeeman field
gµBH/δ = 1, the ground-state spin of niobium changes
from 0 to 1 at ∆/δ = 0.66. However, at gµBH/δ = 2.6, a
spin jump of ∆S = 2 occurs from 0 to 2 at ∆/δ = 2.15 (see
fig. 3(c)). For these two values of ∆/δ, we can roughly
estimate the corresponding critical size of the metallic
grain given the bulk gap value ∆= 3.05meV and Fermi
momentum kF = 11.8 nm

−1 of niobium. In a Fermi gas
model, the mean-level spacing is related to the volume
V of the grain by δ= 2π2�2/(mekFV ), where me is the
electron mass. Assuming a hemispheric grain with radius
r, we have the relation rNb ≈ 2.7 nm(∆Nb/δ)1/3. Thus, the
Hamiltonian (1) with an equidistant spectrum predicts
a 0→ 1 spin transition for a niobium grain of radius
r≈ 2.35 nm and Zeeman field of gµBH = 4.62meV, and
a 0→ 2 spin jump at r≈ 3.48 nm and a Zeeman field of
gµBH = 3.69meV.

Conclusion. – We have shown that there exists a
small region in the ground-state phase diagram of a small
metallic grain in which pairing correlations and ferromag-
netism coexist. This coexistence regime becomes larger
(in the Js/δ-∆/δ plane) and therefore more accessible to
experiments in the presence of a finite Zeeman field. In
particular, we propose that for a given exchange constant
(determined by the material used), spin jumps can be
observed by tuning a Zeeman field. We have also shown
that a quantitative study of the intermediate regime
requires the use of the exact solution. Furthermore, the
mean-field approximation is qualitatively different in that
it does not predict any pairing correlations in the inter-
mediate regime of partial spin polarization.
In this work, we have ignored mesoscopic fluctuations

and focused on a grain with an equidistant single-particle
spectrum. It would be interesting to study how mesoscopic
fluctuations affect the boundaries of the intermediate
phase and the size of the spin jumps.
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