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Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be 
studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions 
and a proton target. We derive an approximate factorized cross section for those SRC-driven p(A, p′N1 N2)

reactions. Our reaction model hinges on the factorization properties of SRC-driven A(e, e′N1 N2) reactions 
for which strong indications are found in theory-experiment comparisons. In order to put our model to 
the test we compare its predictions with results of 12C(p, p′ pn) measurements conducted at Brookhaven 
National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features 
of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We 
study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton–proton 
to proton–neutron knockout cross sections for the carbon isotopes 9−15C thereby covering neutron excess 
values (N − Z)/Z between −0.5 and +0.5.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Many nuclear properties can be captured by the independent-
particle model (IPM) that was developed in the fifties of the previ-
ous century and has not lost its attractiveness as a predictive and 
descriptive nuclear model ever since. The nucleus, however, turns 
out to be more than the linear sum of its nucleons and a rich 
range of nuclear features fall beyond the scope of the IPM. For ex-
ample, nuclear long-range correlations (LRCs), here loosely defined 
as correlations that extend over distance scales of the order of the 
nuclear radius, give rise to exciting collective phenomena like giant 
resonances and halo nuclei. The corresponding excitation-energy 
scale of nuclear LRCs is well established and is of the order of 
MeVs. Nuclear short-range correlations (SRCs) [1–3] extend over 
distance scales of the order of the nucleon size, and are connected 
with substantially larger energy–momentum scales than the LRCs.

The scale separation between IPM, LRC and SRC effects is 
manifested in nuclear momentum distributions nA(k). The IPM 
can account for the strength below the Fermi momentum kF ≈
220 MeV/c. The impact of LRCs on the nA(k) at high nucleon mo-
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menta is mainly confined to k � kF [4] and the tensor component 
of the SRC is the major source of strength for the fat tails above the 
Fermi momentum [5]. This has important implications, for exam-
ple, for the second moment 

〈
k2

〉
of nA(k), that can be connected 

with the expectation value of the non-relativistic kinetic energy 〈
k2

2mN

〉
. Indeed, in an IPM the majority component (most often neu-

trons) has a larger expectation value for the second moment 
〈
k2

〉
than the minority component (most often protons). The dominant 
role of the tensor component in the SRC turns this picture upside 
down and provides the substantially larger values for the 

〈
k2

2mN

〉
of 

the minority component (protons) [6–8]. This illustrates that there 
are important (N − Z) asymmetry aspects to SRCs that are awaiting 
further explorations.

While being a fascinating phenomenon in itself, a full under-
standing of nuclear SRCs and its (N − Z) asymmetry dependence is 
pivotal for studies of compact objects like neutron stars and of the 
nuclear equation of state [9,10]. The last couple of decades have 
marked significant growth in insight into the mass and isospin de-
pendence of nuclear SRCs thanks to an experimental program of 
quasi-free two-nucleon knockout reactions with hadronic and elec-
troweak probes [11–19]. Measuring the multi-fold cross sections 
for those reactions with at least four particles in the final state, is 
really challenging which made one to think about alternate ways 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Pictorial diagram of a kinematically complete p (A, p′N1 N2 R∗) reaction in quasi-free kinematics. The reaction is induced by an accelerated ion A (four-momentum 
P A ) in its ground state colliding with a target proton (Pi ). As a result, an SRC nucleon–nucleon (NN) pair gets ejected from the ion leaving a residual fragment R∗ (P∗

R ). The 
initial and final four-momentum of the SRC NN pair are P12,i and P12, f . In the final state the pair consists of two asymptotically free nucleons with four-momenta P1(E1, �p1)

and P2(E2, �p2). The recoiling target proton has four-momentum P f . The residual nucleus R∗ is created in a state designated by the quantum numbers α. The shaded boxes 
illustrate the momentum variables (top) and the spin–isospin (s, t) variables (bottom) used to describe the collision between an SRC NN pair and a proton in the IA.
of addressing SRC physics through nuclear reactions. Substantial 
progress in extracting the SRC physics from A(e, e′N1N2) measure-
ments has been recently made by investigating appropriate ratios 
of aggregated cross sections and observables against well-selected 
variables [5,19–21]. Thereby, proper kinematic cuts and selections 
have been key to success. Strong evidence for the proton–neutron 
dominance of SRC, for example, emerges from comparing mea-
sured A(e, e′ pp)/A(e, e′ p) and A(e, e′ pn)/A(e, e′ p) ratios [5]. The 
mass dependence of SRC could be addressed with the aid of 
measured A(e, e′ pp)/12C(e, e′ pp) and A(e, e′ pn)/12C(e, e′ pn) ra-
tio’s [19]. The results of these studies provided strong evidence 
that for mid-heavy and heavy nuclei the aggregated impact of SRC 
roughly scales with the mass number (∼ A) and not with ∼ A2 as 
naively expected.

A remaining question, particularly important for understanding 
the physics of neutron stars for example, is how the SRC evolve 
with the asymmetry (N − Z) between the number of neutrons and 
protons. This question can be addressed with selected reactions at 
radioactive-beam facilities. Not only can one probe nuclei with an 
exotic (N − Z), the possibility to measure also the properties of the 
remnant nucleus, adds an additional layer of accuracy and detail 
that has not been achieved in most of the A(e, e′N1N2) studies 
addressing SRC.

Due to new advanced techniques and equipment, the potential 
of quasi-free (p, p′ p) single-nucleon knockout in inverse kinemat-
ics has been demonstrated to provide the means to study single-
particle properties for short-lived nuclei [22–24]. Along the same 
lines, the development of a program for (p, p′N1N2) SRC studies 
from short-lived nuclei with energies of the order of GeV per nu-
cleon is discussed in the community. The success of studies using 
nucleon knockout reactions in quasi-free kinematics very much 
hinges on the availability of an approximate expression for the 
multi-fold cross sections. For example, the quasi-free hypothesis 
[25,26] has proven its great value and effectiveness in studies of 
the single-particle properties of nuclei with (p, p′ p) reactions. The 
quasi-free hypothesis requires that the transferred energy is large 
compared to the average binding energy and that the ejected nu-
cleon N carries away most if not all of the transferred energy and 
momentum. The availability of a factorized approximate form for 
the cross sections, is particularly important in the planning phase 
of the experiments. For example, it is pivotal in order to get real-
istic estimates of the expected count rates. The main purpose of 
this paper is to provide a factorized expression for the SRC driven 
quasi-free p(A, p′N1N2 R∗) reaction. We build our reaction model 
on a formalism that resulted in a factorized expression for exclu-
sive A(e, e′N1N2)R∗ reactions that has been well tested in several 
theory-experiment comparisons [19–21,27–29]. Thereby we estab-
lish a connection between the correlation functions that account 
for nuclear SRC effects in the nuclear momentum distributions 
nA(k) and the two-nucleon knockout cross sections.

2. Formalism

We now develop an approximate but realistic framework to 
compute cross sections for p(A, p′N1N2 R∗) reactions (see Fig. 1 for 
momenta and spin–isospin labels). Our model applies to reactions 
where the accelerated ion’s energy is sufficiently large to adopt 
the quasi-free hypothesis [25,26] that justifies both the impulse 
approximation (IA) and the spectator approximation (SA). The IA 
implies that the target proton interacts with a single nucleon in 
the SRC NN pair. In the SA only the correlated pair in the acceler-
ated ion gets directly involved in the proton collision process and 
all other nucleons act as spectators [30]. The quasi-free reaction 
picture for p(A, p′N1N2 R∗) is schematically shown in Fig. 1. As is 
commonly the case with quasi-free processes, the transition matrix 
element M can be approximately factored in a nuclear-structure 
(M1) and a nuclear-reaction (M2) part

M(Pi + P A → P f + P12, f + P∗
R)

≈ M1
(
�1; P A → P∗

R + P12,i
)

×M2
(
�2; P12,i + Pi → P12, f + P f

)
. (1)

The vertex �1 encodes at given kinematics the probability of re-
moving a bound SRC NN pair from the accelerated ion. Reaction 
vertex �2 describes proton scattering from an SRC NN pair result-
ing in three asymptotically free nucleons. For the calculation of 
the amplitude of the �2 vertex (see inset of Fig. 1) we build on 
our derivations of a factorized cross section for electro- and photo-
induced SRC NN pair knockout reactions [19–21,27,29]. Thereby, 
the transferred momentum �q = �pi − �p f is fully absorbed by a sin-
gle nucleon (the so-called “fast nucleon”) in the SRC NN pair. The 
other nucleon in the SRC NN pair is referred to as the “slow nu-
cleon” and is ejected as a result of the “broken” correlation. In 
the projectile frame (PF), that is the rest frame of the accelerated 
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Fig. 2. Schematic representation of the spatial coordinates of a correlated NN pair. After projecting on close-proximity pairs, the dependence on the c.m. and relative 
coordinates can be factorized.
ion A, the missing energy Em and missing momentum �pm in the 
�2 interaction are defined as

Em = (
E1 + E f − Ei − mN1

)
PF , �pm = (�p1 + �p f − �pi

)
PF ,

(2)

where mN1 is the mass of the fast nucleon. In the IA, �pm cor-
responds with the momentum of the nucleon that scatters with 
the target proton. Ignoring medium modifications, the collision be-
tween the fast nucleon in the SRC NN pair and the proton target 
can be modeled as free nucleon–proton scattering(

Pm ≡ (
Em + mN1 , �pm

)
, s, t

)+ (Pi, si, ti)

→ (P1, s1, t1) + (P f , s f , t f ) , (3)

with s j and t j the spin and isospin projections of the nucleon j.
Given the possibility of detecting all final-state fragments in ra-

dioactive beam experiments, we compute the amplitude for given 
angular momentum and isospin of the ion (= J A T A ) and of the 
residual fragment (= J R T R ) under conditions that allow one to 
identify the slow nucleon and the isospins of all asymptotically 
free nucleons. The transition matrix element of Eq. (1) involves a 
summation over all allowed J , T combinations of the SRC NN pair 
and is evaluated in the PF

M = 1√
2

∑
J MT MT

√
Z(�1)

〈
J R MR J M

∣∣ J A M A
〉

× 〈
T R MT ,R T MT

∣∣T A MT ,A
〉

×
〈1

2
t1

1

2
t2

∣∣∣T MT

〉√ E2mN1

(Em + mN1)mN2

∑
s

M pN1
N N→N N

1

(2π)3

×
∫

d�R d�r e−i �P ·�R e−i�k·�r 〈�R , �r ; s t1 , s2t2

∣∣∣(βγ ) J MT MT

〉
S RC

,

(4)

with

Z(�1) ≡ Z(�1; J R T R , J T ) = A(A − 2)

NA,corr NR,corr

S( J R T R , J T , βγ )

N J NT N J R NT R

.

(5)

Here, S( J R T R , J T , βγ ) is a spectroscopic factor, N J , NT , N J R and 
NT R denote the number of possible quantum numbers for the SRC 
NN pair, and NA,corr and NR,corr are normalization factors. The first 
three factors in the above expression for the amplitude M find 
their origin in the vertex �1. In the derivation of Eq. (4), the nor-
malization of states is treated relativistically, whereas the dynamics 
is treated non-relativistically through wave functions evaluated in 

th
(se

�P
Th

�R
wi
pa

ela
ter
in 
of 
a c
(na
nu
As
tw
W
pa∣∣(
off
wi
ca
typ
tio
(n 
th
by
it 
in 
pa

fun〈�R
e PF. The initial relative and c.m. momenta of the SRC NN pair 
e also Fig. 1) are defined as

≡ �p cm
12,i = �pm + �p2 �k ≡ �p rel

12,i = �pm − �p2

2
. (6)

e corresponding conjugated c.m. and relative coordinates read

= �r1 +�r2

2
�r = �r1 −�r2 , (7)

th �r1 and �r2 (see Fig. 2) the spatial coordinates of the SRC NN 
ir in the projectile frame.
In the expression of Eq. (4), M pN1

N N→N N is the matrix element for 
stic nucleon–nucleon scattering and the 

∣∣(βγ ) J MT MT
〉
S RC de-

mines the quantum state of the SRC NN pair. It is constructed as 
Ref. [29] that contains a derivation of a factorized cross section 
SRC-driven A(e, e′N1N2)R∗ . The SRC pair’s state is modeled as 
orrelation operator acting on a normalized and anti-symmetric 
s) state of two IPM nucleons characterized by the quantum 

mbers β = (
nβ, lβ, jβ, tβ

)
and γ = (

nγ , lγ , jγ , tγ
)

respectively. 
 a result, the residual fragment’s state α can be specified by a 
o-hole state 

∣∣β−1γ −1
〉

in the ground state of the initial nucleus. 
ith these assumptions, one can write for the state of the SRC NN 
ir

βγ ) J MT MT
〉
S RC

= Ĝ(�r, �σ1, �σ2, �τ1, �τ2)
∣∣nβnγ lβ lγ ( jβ jγ ) J M(tβtγ )T MT

〉
nas . (8)

We use harmonic oscillator (HO) single-particle states as they 
er the possibility to separate the pair’s relative and c.m. motion 
th the aid of Moshinsky brackets 〈. . .〉Mos. It has been numeri-
lly shown [8,19–21,27,29] that in evaluating expressions of the 

e (8) the major source of SRC strength stems from correla-
n operators acting on IPM pairs with relative quantum numbers 
= 0, l = 0). This can be intuitively understood by noting that 

e probability of finding close-proximity IPM pairs is dominated 
 pairs in a relative (n = 0, l = 0) state (see also Fig. 2). In Ref. [8]
was shown that across the nuclear chart about 90% of the fat tail 
the nA(k) finds its origin in correlation operators acting on IPM 
irs in a relative (n = 0, l = 0) state.
This leads to the following approximate expression for the wave 
ction of the SRC NN pair in coordinate space:

,�r
∣∣∣(βγ ) J MT MT

〉
S RC

≈ 2
∑

N LML MS

Cβγ
00 J M (S, M S , N, ML)ψN LML (

√
2�R)

× ψ000

( �r√
2

)
Ĝ(�r, �σ1, �σ2, �τ1, �τ2) |(1 − T ) M S , T MT 〉 , (9)
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where ψnlml

( �r√
2

) (
ψN LML

(√
2�R)) are HO eigenstates for the pair’s 

relative (c.m.) motion and the following factor has been introduced

Cβγ
00 J M (S, M S , N, ML)

=
〈
00, N(ε − 2N), (ε − 2N)

∣∣∣∣nβ lβ,nγ lγ , (ε − 2N)

〉
Mos

×
∑
sb,sc

∑
mb,mc

∑
mβmγ

〈
jβmβ jγ mγ

∣∣ J M
〉 〈

lβmb
1

2
sb

∣∣∣∣ jβmβ

〉

×
〈
lγ mc

1

2
sc

∣∣∣∣ jγ mγ

〉 〈
1

2
sb

1

2
sc

∣∣∣∣(1 − T )M S

〉
× 〈

lβmblγ mc
∣∣(ε − 2N)ML

〉
, (10)

with ε = 2nβ + lβ + 2nγ + lγ the HO energy of the NN pair.
With respect to the correlation operator Ĝ , the central (c), ten-

sor (tτ ), and spin–isospin (στ ) terms are responsible for the ma-
jority of the nuclear SRC [8,20,29,31–35]

Ĝ
(�r, �σ1, �σ2, �τ1, �τ2

) = 1 − fc(r) + ftτ (r)̂S12(�τ1 · �τ2)

+ fστ (r)(�σ1 · �σ2)(�τ1 · �τ2) , (11)

with ̂S12 the tensor operator. The functions fc , ftτ and fστ are the 
central, tensor and spin–isospin correlation functions. They are re-
sponsible for the fat tails in the nuclear momentum distributions 
and determine the SRC interaction strength at any given spin–
isospin combination of the NN pair. All results contained in this 
paper are obtained with a set of correlation functions that we have 
systematically used and tuned in SRC-driven reaction studies [13]
[15] [19] [28]. The ftτ (r) and fστ (r) correlation functions are from 
a variational calculation [33], the central correlation function fc(r)
from the G-matrix calculations in nuclear matter [36].

After averaging over initial and summing over final polarization 
states, the combination of Eqs. (4), (9) and (11), leads to the fol-
lowing factorized differential cross section in the laboratory frame

dσ (pN1 N2)

d� f dE1 d�1 dE2 d�2
= 2|MT | K dσ pN1

dt

×
⎧⎨⎩ E2

Em + mN1

∑
J M T

Z(�1; J R T R , J T )

(2 J + 1)(2T + 1)
F βγ

J M,T (�P , �k)

⎫⎬⎭
PF

(12)

with K a kinematic factor evaluated in the laboratory frame

K = 1

(2π)8

(P f · P1)
2 − m2

pm2
N1√

(Pi · P A)2 − m2
pm2

A

mAmR∗
p f p1 p2

E R

×
∣∣∣∣∣1 − E f

E R

�pR · �p f

p2
f

∣∣∣∣∣
−1

, (13)

dσ pN1

dt (with t ≡ (Pi − P f )
2) the cross section for free proton–

nucleon scattering, determined at the off-shell kinematic invariants 
of the subprocess of Eq. (3), and the factor between curly brackets 
is evaluated in the projectile frame. The function F βγ

J M,T (�P , �k) ac-
counts for the SRC effects and can be factored into parts depending 
on the c.m. (�P ) and relative (�k) momentum of the SRC pair (see 
also Fig. 2)

F βγ
J M,T (�P , �k) =

1−T∑
μ=T −1

∣∣∣∣∣F (0)[ fc − 3 fστ ](k) Pβγ
J MTμ(�P )

− δT ,0 12
√

2π F (2)[ ftτ ](k)

O
a
t

F

A
d

P

3

b
n
F
m
c
b
b
p
t
f
t
f
t
a

p
f
t
t

r
w
B
m
h
u
o
p
n

l
p
1

c
t
α

×
2∑

ml=−2

〈
2ml1μ

∣∣1(ml + μ)
〉
Pβγ

J MT (ml+μ)
(�P ) Y2,ml (�k)

∣∣∣∣∣
2

.

(14)

bviously, the relative-momentum part receives contributions from 
ll three terms in the correlation operator of Eq. (11). At given k
he strength attributed to the correlation function f is given by

(l′)[ f ](k) = 4π√
2l′ + 1

×
⎡⎣ l′∑

m′
l=−l′

∣∣∣∣ ∫ d�r
(2π)3/2

e−i�k·�r ψ000

( �r√
2

)
Yl′m′

l
(�) f (r)

∣∣∣∣2
⎤⎦1/2

.

(15)

t given c.m. momentum �P the contribution to the F βγ
J MT (�P , �k) is 

etermined by

βγ
J MTμ(�P ) =

∑
N

Cβγ
00 J M (1 − T ,μ, N, M − μ)

×
∫

d�R
(2π)3/2

e−i �P ·�R ψN L=(ε−2N)
ML=(M−μ)

(√
2�R) . (16)

. Results

All results presented here use the cross-section form of Eq. (12)
ased on plane-wave dynamics of the impinging and ejected 
ucleons ignoring initial- and final-state interactions (IFSI). The 
SI analysis of SRC-driven A(e, e′N1N2) in [21] indicate that FSI 
ainly cause a reduction of the cross sections, without signifi-

antly changing their shape. For the cross sections with carbon 
eams we deduce an IFSI reduction factor of the plane-wave 
ased cross sections of the order 0.05 − 0.1. In what follows we 
resent results for SRC driven 2N knockout from the 9−16C iso-
opes. The HO single-particle states of those nuclei are obtained 
rom an analysis of the momentum distributions extracted from 
he p(9−16C, p′ p) measurements of Ref. [23]. The values for the 
ree proton–proton cross section dσ pp

dt in Eq. (12) are obtained from 
he SAID code [37,38] for laboratory kinetic energies below 3 GeV 
nd from the parametrization of Ref. [39] for higher energies.

Fig. 3 displays the p( 10C, p′ pn) cross section in specific in-
lane kinematics. Clearly, the bulk of the cross sections comes 

rom pn knockout in configurations approaching back-to-back of 
he initial SRC pair. This feature emerges in several SRC investiga-
ions [5,19,21,40].

In order to test the validity of the factorized cross section de-
ived in Sec. 2, we compare computed 12C(p, p′ pn) cross sections 
ith experimental results obtained with the EVA spectrometer at 

NL [16,41]. The kinematics is detailed in Ref. [42]. In order to 
atch the kinematic areas of the calculations and the data we 

ave adopted the kinematics cuts outlined in Ref. [16] and we 
sed the data-driven pp differential cross section parametrization 
f Ref. [39]. We consider knockout of SRC pn pairs from the s and 
shells in carbon. All results of Fig. 4 use Eq. (12) with the ejected 

eutron as the “slow” nucleon.
Obviously the calculations reproduce the change in the angu-

ar correlations for the opening angle between the nucleons in the 
air between p2 < kF and p2 > kF . In Fig. 4, we also show the 
2C(p, p′ pn) cross section as a function of the longitudinal light-
one momentum fractions αm and α2 carried by the nucleons in 
he ejected SRC NN pair. With the ẑ-axis parallel to the beam, the 

j are defined as [43]
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Fig. 3. The p( 10C, p′ pn) cross section for the knockout of an SRC pn pair as a function of the bound proton’s (neutron’s) PF angle θ1 (θ2) relative to the initial proton 
momentum �pi . All particle momenta lie in the ion scattering plane, with laboratory momenta p A = 2.5 A GeV and p f = 1.5 GeV. The nucleons’ initial momenta in the PF 
are pm = p2 = 400 MeV.
Fig. 4. Predictions for 12C(p, p′ pn) observables in the kinematics of Ref. [16]. Top: 
Heat map of pn knockout events as a function of the opening angle cosγ and the 
initial neutron momentum p2. We compare measured events (left panel adapted 
from Ref. [41]) with calculated cross sections (right panel). Bottom: The cross sec-
tion as a function of the light-cone momentum fractions αm and α2. We compare 
calculated cross sections (solid lines), to the histogram of the measured number of 
events [16]. As the data are provided as “counts” they are scaled in such a way that 
the mean of the two measured and computed cross-section peaks coincide.

α j = A
E j − p j,z

E A − p A,z
. (17)

For high-energetic beams, the α j are natural variables to char-
acterize the nucleons’ momentum distributions. In the PF (P A =
(mA, �0)) one finds [16]

αm ≈ 1 + Em − pm,z

mN1

and α2 ≈ E2 − p2,z

mN2

. (18)

In Fig. 4 we compare the calculated cross sections with the 
measured number of events. As a supplementary consistency 
check, we apply the same scaling factor to the αm and α2 dis-
tributions. The shapes of both histograms are captured well by the 
calculated cross sections. The use of a unique normalization fac-
tor indicates that our model reproduces the relative cross sections 
dσ / dσ .
dαm dα2
In order to derive the SRC pair probabilities from the cross sec-
tion of Eq. (12), we define the function

P MT
βγ (�P , �k) = 22|MT |−1

∑
J M T

1

2 J + 1

1

2T + 1
F βγ

J M,T (�P , �k) , (19)

that determines at given c.m. and relative momentum the cross 
section for removing a pair with given MT . The ratio of pn to pp
SRC pair probabilities at given k can be derived from the expres-
sions (14), (15), (16) after integration over the c.m. momentum �P
of the SRC pair. This operation results in

R pn
pp

(k) =
∑

βγ

∫
d�kd�P P MT =0

βγ (�P , �k)∑
βγ

∫
d�kd�P P MT =1

βγ (�P , �k)

= 1

2
+ 3

2
S0 + 108 S1

{
F (2) ftτ ](k)

F (0)[ fc − 3 fστ ](k)

}2

, (20)

where S0 and S1 depend on the quantum numbers of the im-
pinging ion and are k-independent. The ratio of Eq. (20) can be 
connected to cross-section ratios accessible in p(A, p′ pN) experi-
ments and is for example not sensitive to FSI effects in the SRC 
pair.

Fig. 5 shows predictions for the k-dependence of the ratio 
(20) and its inverse for different carbon isotopes. Three regions 
in the relative momentum can be discerned. For k < kF the pp
to pn SRC pair fractions are constant and are determined by (
R pn

pp
(k) = 1

2 + 3
2 S0

)
. The number of n = 0, l = 0 pn and pp pairs 

determines the value of the ratio. A rapid decrease of the pp/pn
ratio is seen to start at k � kF . For all considered carbon iso-
topes the SRC pn removal probability is much larger than the pp
one for kF � k � 3kF . The dominance of the pn SRC pairs over 
the pp SRC ones in that momentum range is clearly illustrated 
in the center panel of Fig. 5. For all carbon isotopes the SRC-
driven p(C, p′ pn) cross section is at least an order of magnitude 
larger than the p(C, p′ pp) one. We can conclude that for all iso-
topes, pn pair knockout dominates for kF � k � 3kF , a property 
that is observed experimentally in electro-induced nucleon pair 
knockout from 12C [5,44]. For k � 3kF the cross sections are no 
longer dominated by the tensor correlation function, and the pp
over pn SRC-pair probabilities display similar trends as observed 
for k � kF . The expected fraction of pn over pp SRC pair removals 
for kF � k � 3kF can be defined as
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Fig. 5. Ratios of the pn and pp SRC-pair removal probabilities in various carbon isotopes. Left: the pp over pn ratio, this is the reciprocal of Eq. (20), as a function of the 
initial relative momentum k of the SRC NN pair. The arrows indicate the constant ratio 1

2 + 3
2 S0 when no tensor correlations are taken into account. Center: the k dependence 

of the binned pn over pp ratios of Eq. (20). Right: the fraction of SRC pn pairs defined in Eq. (21) for different carbon isotopes.
f pn =
∑

βγ

∫ 3kF
kF

dk
∫

d�k
∫

d�P P 0
βγ (�P , �k)∑

βγ

∫ 3kF
kF

dk
∫

d�k
∫

d�P
[

P 1
βγ (�P , �k) + P 0

βγ (�P , �k)
] . (21)

In Fig. 5 we display predictions for f pn as a function of A for 
Z = 6. The observed trends can be mainly attributed to the num-
ber of (n = 0, l = 0) pn and pp pairs for given (N, Z). For 12C, we 
find a fraction ≈ 93% that is comparable to the fractions extracted 
from measurements [44,5]. Our predictions for f pn cover neutron 
excess values (N − Z)/Z between −0.5 and +0.5. Over that range 
the f pn changes by less than 10%, a value much smaller than an-
ticipated on the basis of variations in the ratio (N × Z)/(Z × Z).

4. Conclusions

We have introduced a factorized plane-wave-based model for 
the calculation of SRC-driven p(A, p′N1N2 R∗) reaction cross sec-
tions, that can serve in particular for the analysis of exclusive 
proton-induced two-nucleon knockout reactions in inverse kine-
matics. Our model calculates these cross sections based on a 
chosen set of single-particle wave functions, correlation functions 
and free pN-scattering cross section data. We have shown that 
our model reproduces characteristic features of SRC-driven two-
nucleon knockout reactions that are also found in electro-induced 
two-nucleon knockout reactions. We also describe 12C(p, p′ pn)

data rather well. Based on the factorization properties of the cross 
section, we can conclude that the isospin dependence of SRC can 
be studied by evaluating cross-section ratios. The ratio of the inte-
grated removal probabilities for pn over pp pairs can be connected 
to a ratio of correlation functions depending on the initial relative 
momentum of the pair. Our model is an important first step in 
constructing a reaction model. Required refinements to the pro-
posed model include the description of IFSI and the inclusion of 
configuration-mixing effects [45] in the description of the ground-
state wave function of the target nuclei. The model is applicable to 
planned experiments aimed at further uncovering the characteris-
tics of nuclear SRC, in particular its asymmetry dependence.
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