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Abstract

The first-order eikonal approximation is frequently adopted in interpreting the re-
sults of A(e, e′p) measurements. Glauber calculations, for example, typically adopt
the first-order eikonal approximation. We present an extension of the relativis-
tic eikonal approach to A(e, e′p) which accounts for second-order eikonal correc-
tions. The numerical calculations are performed within the relativistic optical model
eikonal approximation. The nuclear transparency results indicate that the effect of
the second-order eikonal corrections is rather modest, even at Q2 ≈ 0.2 (GeV/c)2.
The same applies to polarization observables, left-right asymmetries, and differen-
tial cross sections at low missing momenta. At high missing momenta, however, the
second-order eikonal corrections are significant and bring the calculations in closer
agreement with the data and/or the exact results from models adopting partial-wave
expansions.
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1 Introduction

The eikonal approximation [1–3] has a long history of successful results in
describing scattering processes like nucleon-nucleus scattering, heavy-ion col-
lisions, and electroinduced nucleon-knockout reactions. The latter class of re-
actions, usually denoted as A(e, e′p), provide access to a wide range of nuclear
phenomena like short- and long-range correlations, relativistic effects, the tran-
sition from hadronic to partonic degrees of freedom, and medium modifications
of nucleon properties. The interpretation of A(e, e′p) data heavily relies on an
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accurate description of the effect of the final-state interactions (FSI), i.e., the
interactions of the ejected proton with the residual nucleus such as rescatter-
ing and/or absorption. The eikonal approximation has been widely used to
treat these distortions, either in combination with optical potentials [4–7], or
with Glauber theory, its multiple-scattering extension [8–15].

The eikonal scattering wave functions are derived by linearizing the continuum
wave equation for the ejected proton. Hence, the solution is only valid to first
order in 1/k, with k the proton’s momentum, and the eikonal approximation
is suited for the description of reactions at sufficiently high energies. To extend
the applicability to lower energies, Wallace [16] has developed systematic cor-
rections to the eikonal scattering amplitude. Several authors have investigated
the effect of higher-order eikonal corrections in elastic nuclear scattering by
protons, antiprotons, and α particles [17,18], heavy-ion collisions [19–22], and
inclusive electron-nucleus scattering [23]. The aim of this Letter is to deter-
mine the influence of higher-order eikonal corrections on A(e, e′p) observables.
To this purpose, we extend the relativistic optical model eikonal approxima-
tion (ROMEA) A(e, e′p) framework of Ref. [7]. Our formalism builds upon the
work of Baker [24], where an eikonal approximation for potential scattering
was derived to second order in 1/k. Here, this work is extended to include the
effect of the spin-orbit potential.

The outline of this Letter is as follows. In Section 2, the second-order eikonal
correction to the ROMEA model is derived. Section 3 presents the results of
the A(e, e′p) numerical calculations. We look into how the second-order eikonal
correction affects more inclusive quantities like the nuclear transparency, as
well as truly exclusive observables such as the induced normal polarization
Pn, the left-right asymmetry ALT , and the differential cross section. Finally,
in Section 4, we state our conclusions.

2 Formalism

For the description of the A(e, e′p) reaction, we adopt the impulse approxi-
mation (IA) and the independent-nucleon picture. Within this approach, the
basic quantity to be computed is the transition matrix element [25]

〈Jµ〉 =
∫

d~r Ψ
(−)
~k,ms

(~r) Ĵµ(~r) ei~q·~r φα1
(~r) . (1)

Here, φα1
and Ψ

(−)
~k,ms

are the relativistic bound-state and scattering wave func-

tions, with α1 the quantum numbers of the struck proton and ~k and ms the
momentum and spin of the ejected proton. The relativistic bound-state wave
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function is obtained in the Hartree approximation to the σ − ω model [26]
with the W1 parametrization for the different field strengths [27]. The scat-

tering wave function Ψ
(−)
~k,ms

appears with incoming boundary conditions and is

related to Ψ
(+)
~k,ms

by time reversal. Furthermore, Ĵµ is the relativistic one-body

current operator. Throughout this Letter, we use the Coulomb gauge and the
CC2 form of Ĵµ [28].

We now turn our attention to the determination of the scattering wave func-
tion Ψ

(+)
~k,ms

. We start by considering the Dirac equation for a proton with

relativistic energy E =
√

k2 + M2
N and spin state

∣

∣

∣

1
2
ms

〉

subject to Lorentz

scalar and vector potentials Vs(r) and Vv(r). The Dirac equation for the four-

component spinor Ψ
(+)
~k,ms

(~r) is converted to a Schrödinger-like equation for the

upper component u
(+)
~k,ms

(~r) [7, 29]

[

−
∇2

2MN
+ Vc(r) + Vso(r) (~σ · ~L − i~r · ~̂p)

]

u
(+)
~k,ms

(~r) =
k2

2MN
u

(+)
~k,ms

(~r) . (2)

The central Vc(r) and spin-orbit Vso(r) potentials are defined in terms of the

scalar and vector ones, Vs(r) and Vv(r). The lower component w
(+)
~k,ms

(~r) is

related to the upper one through

w
(+)
~k,ms

(~r) =
1

E + MN + Vs(r) − Vv(r)
~σ · ~̂p u

(+)
~k,ms

(~r) . (3)

When solving Eq. (2) in the eikonal approximation, a standard procedure is

to replace the momentum operator ~̂p by the asymptotic momentum ~k in the
spin-orbit (Vso(r)~σ · ~L) and Darwin (Vso(r) (−i~r · ~̂p)) terms, as well as in the
lower component (3). In literature, this is usually referred to as the effective
momentum approximation (EMA) [30]. For the upper component, one puts
forward a solution of the form

u
(+)
~k,ms

(~r) ≡ N η(~r) ei~k·~r χ 1

2
ms

, (4)

i.e., a plane wave modulated by an eikonal factor η(~r). Here, N is a normal-
ization factor.

In the ROMEA approach [7, 29], which adopts the first-order eikonal approx-

imation, Eq. (2) is linearized in ~̂p leading to a solution for the eikonal factor
of the form

ηROMEA(~r) = ηROMEA(~b, z) = exp



−i
MN

k

z
∫

−∞

dz ′ Vopt(~b, z
′)



 , (5)
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where ~r ≡ (~b, z), the z axis lies along the momentum ~k of the proton, and

Vopt(~b, z) = Vc(~b, z) + Vso(~b, z) (~σ · ~b × ~k − ikz). Despite the fact that it is
written as an exponential phase, the solution (5) is only valid up to first order
in Vopt/k.

In what follows, we will derive an expression for the eikonal factor η(~r) that
is valid up to order Vopt/k

2. The momentum dependence in the spin-orbit
and Darwin terms makes that these terms are retained up to order Vso/k,
while central terms are included up to order Vc/k

2. Note that the expansion is
not expressed in terms of the Lorentz scalar and vector potentials Vs and Vv.
Looking for a solution of the form (4) for the Schrödinger-like equation (2),
Baker arrived at the following equation for the eikonal factor (see Eq. (14) of
Ref. [24]):

η(~b, z) = 1 − i
MN

k

z
∫

−∞

dz ′ Vopt(~b, z
′) η(~b, z ′) +

MN

2k2
Vopt(~b, z) η(~b, z)

+
MN

2k2

z
∫

−∞

dz ′ (z − z ′)

(

1

b
+

∂

∂b

)

∂

∂b

(

Vopt(~b, z
′) η(~b, z ′)

)

. (6)

Note that, apart from dropping contributions of order Vopt/k
3 and higher, no

additional assumptions were made when deriving Eq. (6). In Ref. [24], Eq. (6)
was subsequently solved for spherically symmetric potentials. The spin-orbit
and Darwin terms, however, break the spherical symmetry and a novel method
to solve Eq. (6) is needed. To that purpose, we assume that the derivative of
the function η is of higher order in 1/k than η itself (as is true for the ROMEA
solution (5)). This allows us to drop the ∂η/∂b contribution in the last term
of Eq. (6), as it is of order Vopt/k

3 or higher:

MN

2k2

z
∫

−∞

dz ′ (z − z ′)

(

1

b
+

∂

∂b

)

∂

∂b

(

Vopt(~b, z
′) η(~b, z ′)

)

=
MN

2k2

(

1

b
+

∂

∂b

) z
∫

−∞

dz ′ (z − z ′)

×

[

∂

∂b

(

Vc(~b, z
′) + Vso(~b, z

′) (~σ ·~b × ~k − ikz ′)
)

]

η(~b, z ′) . (7)

Spherical symmetry implies that z ′ ∂Vc(~b, z
′)/∂b = b ∂Vc(~b, z

′)/∂z ′. Hence,
the z ′ ∂Vc/∂b term in Eq. (7) can be written as
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−
MN

2k2

(

1

b
+

∂

∂b

) z
∫

−∞

dz ′ b
∂Vc(~b, z

′)

∂z ′
η(~b, z ′)

=−
MN

2k2

(

1

b
+

∂

∂b

) z
∫

−∞

dz ′ b
∂

∂z ′

(

Vc(~b, z
′) η(~b, z ′)

)

=−
MN

2k2

[(

2 + b
∂

∂b

)

Vc(~b, z)

]

η(~b, z) . (8)

In the first step, we made use of the fact that the derivative ∂η/∂z ′ is of higher
order to turn the integrand into an exact differential. A similar reasoning,
followed by integration by parts, leads to

MN

2k2

(

1

b
+

∂

∂b

) z
∫

−∞

dz ′ (z − z ′)
∂Vso(~b, z

′)

∂b
(−ikz ′) η(~b, z ′)

=−i
MN

2k

z
∫

−∞

dz ′

[(

2 + b
∂

∂b

)

Vso(~b, z)

]

η(~b, z ′) , (9)

for the Darwin term of Eq. (7). Inserting the expressions of Eqs. (8) and (9),
Eq. (6) adopts the form

η(~b, z) =

1 − i
MN

k

z
∫

−∞

dz ′ Vopt(~b, z
′) η(~b, z ′) −

MN

2k2

[(

1 + b
∂

∂b

)

Vc(~b, z)

]

η(~b, z)

+
MNz

2k2b

(

1 + b
∂

∂b

) z
∫

−∞

dz ′
∂Vc(~b, z

′)

∂b
η(~b, z ′)

+
MN

2k2
Vso(~b, z) (~σ ·~b × ~k − ikz) η(~b, z)

+
MN

2k2b

(

1 + b
∂

∂b

) z
∫

−∞

dz ′ (z − z ′)

[

∂

∂b

(

Vso(~b, z
′)~σ ·~b × ~k

)

]

η(~b, z ′)

− i
MN

2k

z
∫

−∞

dz ′

[(

2 + b
∂

∂b

)

Vso(~b, z)

]

η(~b, z ′) . (10)

We look for a solution of the form

η(~b, z) = f(~b, z) exp



−i
MN

k

z
∫

−∞

dz ′ Vopt(~b, z
′) f(~b, z ′)





= f(~b, z) exp
(

i S(~b, z)
)

, (11)
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which should reduce to the ROMEA result of Eq. (5) when terms of higher

order than Vopt/k are neglected. Accordingly, the function f(~b, z) should be of
the form f = 1 + O(Vopt/k

2). Substituting (11) into Eq. (10) and multiplying

by e−i S(~b,z) yields

f(~b, z) = 1 −
MN

2k2

[(

1 + b
∂

∂b

)

Vc(~b, z)

]

f(~b, z)

+
MNz

2k2b

(

1 + b
∂

∂b

) z
∫

−∞

dz ′
∂Vc(~b, z

′)

∂b
f(~b, z ′)

+
MN

2k2
Vso(~b, z) (~σ ·~b × ~k − ikz) f(~b, z)

+
MN

2k2b

(

1 + b
∂

∂b

) z
∫

−∞

dz ′ (z − z ′)

[

∂

∂b

(

Vso(~b, z
′)~σ ·~b × ~k

)

]

f(~b, z ′)

− i
MN

2k

z
∫

−∞

dz ′

[(

2 + b
∂

∂b

)

Vso(~b, z)

]

f(~b, z ′) . (12)

In deriving this equation, we set ei S(~b,z ′) e−i S(~b,z) equal to 1, since higher-order
terms are neglected. The difficulty in solving for f(~b, z) is that Eq. (12) is an

integral equation. An expression for f(~b, z) can, however, be readily obtained
by adding (1−f) terms, which introduce only higher-order terms, to the right-
hand side of Eq. (12). This is permitted since we seek for a solution up to order
Vopt/k

2. With this manipulation, the function f becomes

f(~b, z) = 1 −
MN

2k2

(

1 + b
∂

∂b

)

Vc(~b, z) +
MNz

2k2b

(

1 + b
∂

∂b

) z
∫

−∞

dz ′
∂Vc(~b, z

′)

∂b

+
MN

2k2
Vso(~b, z) (~σ ·~b × ~k − ikz)

+
MN

2k2b

(

1 + b
∂

∂b

) z
∫

−∞

dz ′ (z − z ′)
∂

∂b

(

Vso(~b, z
′)~σ ·~b × ~k

)

− i
MN

2k

z
∫

−∞

dz ′

(

2 + b
∂

∂b

)

Vso(~b, z) . (13)

The eikonal factor of Eq. (11) with f(~b, z) given by (13), is a solution of the
integral equation (6) to order Vopt/k

2 and reduces to the ROMEA result (5)
when truncated at order Vopt/k. Furthermore, it can be easily verified that the
derivative of η is of higher order in Vopt/k than η itself. Henceforth, calculations
performed with the eikonal factor of Eqs. (11) and (13), are dubbed as the
second-order relativistic optical model eikonal approximation (SOROMEA).
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3 Results

One way to quantify the overall effect of FSI in A(e, e′p) processes is via
the nuclear transparency. The measurements are commonly performed under
quasielastic conditions [31–36]. We obtain the theoretical transparencies by
adopting similar expressions and cuts as in the experiments. Hence, the nuclear
transparency is defined as [37]

T =

∑

α

∫

∆3pm
d~pmSα(~pm, Em, ~k)

cA
∑

α

∫

∆3pm
d~pmSα

PWIA(~pm, Em)
. (14)

Here, Sα is the reduced cross section for knockout from the shell α

Sα(~pm, Em, ~k) =

d5σα

dΩpdǫ′dΩ
ǫ′

(e, e′p)

Kσep

, (15)

where ~pm and Em are the missing momentum and energy, K is a kinemati-
cal factor and σep is the off-shell electron-proton cross section. Sα

PWIA is the
reduced cross section within the plane-wave impulse approximation (PWIA)
in the nonrelativistic limit. Further,

∑

α extends over all occupied shells α in
the target nucleus. The phase-space volume in the missing momentum ∆3pm

is defined by the cut |pm| ≤ 300 MeV/c. The A-dependent factor cA corrects
in a phenomenological way for the effect of short-range correlations. We intro-
duce the cA in the denominator of Eq. (14) because the data have undergone
a rescaling with cA = 0.9 (12C) and 0.82 (56Fe).

Transparencies have been computed for the nuclei 12C and 56Fe at planar
and constant (~q, ω) kinematics compatible with the phase space covered in
the experiments. For the optical potential, the EDAD1 parametrization of
Ref. [38] was used.

In Fig. 1 the ROMEA and SOROMEA results are displayed as a function
of the four-momentum transfer Q2 and compared to the data. Not surpris-
ingly, at high Q2, the ROMEA and SOROMEA predictions practically coin-
cide and the role of the second-order eikonal effects grows with decreasing Q2.
At Q2 = 1.7 (GeV/c)2, the ROMEA and SOROMEA transparencies agree to
within 1%; while at Q2 = 0.3 (GeV/c)2, the difference has risen to 3% for
56Fe and 5% for 12C. The enhancement of the nuclear transparency due to
the second-order eikonal corrections is modest, even for values of the four-
momentum transfer as low as Q2 = 0.2 (GeV/c)2. Both the ROMEA and
the SOROMEA predictions tend to slightly underestimate the measurements.
The second-order corrections move the predictions somewhat closer to the
Q2 = 0.34 (GeV/c)2 data point.
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As the nuclear transparency involves integrations over missing momenta and
energies, it may hide subtleties in the theoretical treatment of the FSI mech-
anisms. Next, we focus on highly exclusive A(e, e′p) quantities and quantify
the role of second-order eikonal effects.

An observable that is particularly well suited to study FSI effects is the induced
normal polarization

Pn =
d5σ (σn =↑) − d5σ (σn =↓)

d5σ (σn =↑) + d5σ (σn =↓)
, (16)

where σn denotes the spin orientation of the ejectile in the direction orthogonal
to the reaction plane. Indeed, in the one-photon exchange approximation, Pn

vanishes in the absence of FSI.

Fig. 2 shows the missing momentum dependence of the induced normal polar-
ization for the kinematics of Ref. [39], corresponding with Q2 ≈ 0.5 (GeV/c)2.
The calculations are performed with the energy-dependent A-independent
(EDAI) potential of Ref. [38]. The ROMEA results are in line with the rela-
tivistic distorted-wave impulse approximation (RDWIA) calculations of Ref. [40].
The RDWIA framework was implemented by the Madrid-Sevilla group [41]
and relies on a partial-wave expansion of the exact scattering wave function.
It is similar to the (SO)ROMEA approach in that both models compute the
effect of the FSI with the aid of proton-nucleus optical potentials. Further,
the overall agreement with the data is excellent. The second-order eikonal
corrections are most pronounced for the 1s1/2 level. For missing momenta
pm > 125 MeV/c, they reduce the magnitude of the Pn for the 1s1/2 state
by roughly 20%, thereby resulting in a marginally better agreement with the
highest pm data point. For 1p3/2 knockout, on the other hand, the effect of the
second-order eikonal corrections is smaller than 5%.

The inclusion of the second-order eikonal effects is particularly visible at high
missing momentum, a region where also other mechanisms become impor-
tant. The qualitative behavior of the meson-exchange and ∆-isobar currents,
for instance, is alike [42]. At low missing momenta (pm ≤ 200 MeV/c), the in-
duced normal polarization Pn is relatively insensitive to the two-body currents;
whereas at higher missing momenta, sizable contributions from the meson-
exchange and isobar currents are predicted. The influence of the meson and
isobar degrees of freedom is also stronger for knockout from the 1s1/2 shell
than for 1p3/2 knockout.

In Fig. 2, also calculations neglecting the spin-orbit part Vso(~b, z)~σ ·~b×~k are
shown. They illustrate that the spin-orbit distortion is the largest source of
Pn. Hence, a correct inclusion of this term is essential. Moreover, Pn proves to
be rather sensitive to the choice of optical potential [40].
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Another A(e, e′p) observable which has been the subject of many investigations
is the left-right asymmetry

ALT =
d5σ (φ = 0◦) − d5σ (φ = 180◦)

d5σ (φ = 0◦) + d5σ (φ = 180◦)
. (17)

The subscript LT indicates that this quantity is closely related to the longitudinal-
transverse response function.

Fig. 3 presents the ALT predictions for the removal of 1p-shell protons in
16O in the kinematics of Refs. [43, 44]. The FSI shift the dip in ALT , which
is located at pm ≈ 400 MeV/c in the relativistic PWIA (RPWIA), to lower
values of the missing momentum. This shift is essential to describe the data at
pm ≈ 350 MeV/c. The exact pm location and height of the ripple, however, are
affected by many ingredients of the calculations, such as the current operator,
bound-state wave function, and parametrization of the optical potential [44].
As can be inferred from Fig. 3, the second-order eikonal corrections affect the
height, but not the position of the ripple.

We also show the results of our SOROMEA calculations within the so-called
noSV approximation. In this approximation, the dynamical enhancement of
the lower component of the scattering wave (3) due to the Vs(r)− Vv(r) term
is omitted. As such, the SOROMEA-noSV calculations make the same set of
assumptions as the EMAf-noSV predictions by the Madrid-Sevilla group. The
EMAf-noSV approach is an RDWIA calculation which adopts the EMA in
combination with the noSV approximation. The second-order eikonal correc-
tions clearly increase the height of the oscillation in ALT and brings the eikonal
noSV calculations in excellent agreement with the corresponding partial-wave
prediction EMAf-noSV. Finally, the comparison between the SOROMEA and
the SOROMEA-noSV calculations demonstrates that the dynamical enhance-
ment plays a significant role in the description of the ALT data.

In Fig. 4, 16O(e, e′p) cross-section results are displayed for the kinematics
of Fig. 3. The spectroscopic factors, which normalize the calculations to the
data, were determined by performing a χ2 fit to the data and are summa-
rized in Table 1. The RDWIA spectroscopic factors are 5–10% higher than
the (SO)ROMEA ones. The second-order eikonal corrections hardly affect the
values of the extracted spectroscopic factors. Both our (SO)ROMEA calcula-
tions and the RDWIA predictions of the Madrid-Sevilla group do a very good
job of representing the data over the entire pm range. For missing momenta
|pm| ≤ 250 MeV/c, the (SO)ROMEA and RDWIA results are in excellent
agreement. The impact of the second-order eikonal corrections on the com-
puted differential cross sections is almost negligible for pm below the Fermi
momentum, but can be as large as 30% at high pm. The inclusion of the
second-order effects improves the agreement with the RDWIA calculations at
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these high missing momenta. Results for the effective response functions RL,
RT , RLT , and RTT are not shown, but the effect of the second-order eikonal
corrections is similar to the effect on the differential cross section.

RPWIA ROMEA SOROMEA RDWIA

1p3/2 0.55 0.84 0.83 0.92

1p1/2 0.47 0.75 0.74 0.78

Table 1
The spectroscopic factors for the 16O(e, e′p) reaction of Ref. [43], as obtained with
a χ2 procedure.

4 Conclusions

We have developed a formalism to account for second-order corrections in the
eikonal approximation. Our model is relativistic and includes both the central
and spin-orbit parts of the optical potentials. The formalism has been applied
to A(e, e′p) processes. Our numerical calculations show that the effect of the
second-order eikonal corrections on A(e, e′p) observables is rather limited for
Q2 ≥ 0.2 (GeV/c)2. The nuclear transparency calculations confirm the ex-
pected energy dependence of the eikonal corrections: the effect decreases with
increasing Q2. Concerning the pm dependence of the A(e, e′p) observables, the
effect of the second-order eikonal corrections is minor except at high missing
momenta. In this high-pm region, the eikonal corrections affect the observables
up to an order of 30%, thereby bringing the calculations closer to the data
and/or the RDWIA calculations. The robustness of the first-order eikonal ap-
proximation, which emerges from this study, can be invoked to explain the
success of the Glauber approach to A(e, e′p) down to relatively low kinetic
energies of 200 MeV.
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Fig. 1. Nuclear transparencies versus Q2 for A(e, e′p) reactions in quasielastic kine-
matics. The SOROMEA (dashed lines) are compared to the ROMEA (solid lines)
results. The EDAD1 potential [38] has been employed in both formalisms. Data
points are from Refs. [31] (open squares), [32, 33] (open triangles), [34, 35] (solid
triangles), and [36] (open diamonds).
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Fig. 2. Induced normal polarization Pn for proton knockout from the 1p3/2 (upper
panel) and 1s1/2 (lower panel) shell in the 12C(e, e′~p) reaction. The kinematics is de-
termined by beam energy ǫ = 579 MeV, momentum transfer q = 760 MeV/c, energy
transfer ω = 292 MeV, and azimuthal angle φ = 180◦. The solid (dashed) curves
represent ROMEA (SOROMEA) calculations. The dot-dashed (dotted) curves re-
fer to predictions obtained within the ROMEA (SOROMEA) frameworks, with the
spin-orbit term Vso(~b, z)~σ ·~b × ~k turned off. The data are from Ref. [39].
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Fig. 3. The left-right asymmetry ALT for the 16O(e, e′p) experiment of [43].
The kinematics was ǫ = 2.442 GeV, q = 1 GeV/c, and ω = 445 MeV (i.e.,
Q2 = 0.8 (GeV/c)2). The red solid (green dashed) lines show the results of the
ROMEA (SOROMEA) calculations. The SOROMEA-noSV (orange long-dotted
curves) calculations differ from the SOROMEA calculations in that the dynamical
enhancement of the lower component of the scattering wave function is neglected.
The cyan short-dotted curves present the results from an RDWIA calculation where
the spinor distortions in the scattered wave are neglected. All calculations use the
EDAI version for the optical potentials [38]. The black short-dotted curves represent
the RPWIA results. The data points are from Ref. [43].
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Fig. 4. 16O(e, e′p) cross sections compared to ROMEA, SOROMEA, RDWIA, and
RPWIA calculations for the constant (~q, ω) kinematics of Fig. 3. The calculations
use the optical potential EDAI [38]. The data are from Ref. [43] and the RDWIA
results from Ref. [44]. The following convention is adopted: positive (negative) pm

corresponds to φ = 180◦ (φ = 0◦).
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