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| ntroduction




When | started theresearchfor my Ph.D., in October 1993, | planned to study neutrino scat-
tering reactionson atomic nuclei. Of lateyears, neutrino-nucleusscattering hascaught alot
of attention in connection to astrophysical topics like the supernova expl osion mechanism
and supernova nucleosynthesis. Especially for this last topic, neutrino-nucleus cross-
sections are necessary ingredients for understanding the mechanisms at work. Though
most of the nuclei are synthesised viathe long known s- and r-processes (neutron capture
and beta decay), the origin of some nuclei cannot be explained in this way. Neutrino in-
duced reactions might play a central role in the synthesis mechanism of nuclei like '* Be,
19 p 1807, Also in the supernova expl osion mechanism neutrinos play an important role.
The most abundant elements in the outer shells of asupernovaare *He, 2C, 190, *° Ne
and 28S:. Hereit isimportant to know how much energy the neutrinos can transfer from
the core to the envelope of the supernova. The plan was to calculate neutrino-nucleus
scattering cross-sectionson 127, 160, 2° N e and perhaps %6 F'e, using a continuum random-
phase approximation (CRPA). A CRPA code devel oped by Jan Ryckebusch for the study
of electron scattering on atomic nuclei, was modified for the study of weak-interaction
processes, particularly neutrino scattering. For °0O this worked fine. Because 1°0 is a
double-magic, spherical nucleus, the CRPA is a rather good approximation to the real

many-body system. However, for 12C, | observed that the results are quite sensitive to the
specific structure that is assumed for the ground state. In the energy regime of interest
(excitation energies about 10 to 20 MeV), an accurate description of the deformation and
the correlationsin the ground state of these nuclel is needed in order to obtain aredistic
description of the neutrino-nucleus scattering reactions. The CRPA does not describe the
ground state of nuclel such as '*C' and ?* Ne well enough to obtain accurate values for
the neutrino scattering cross-sections. A second problem is the fact that CRPA assumes
the nucleus to be in its ground state before interacting with a neutrino. In supernovae
the temperature can be extremely high, of the order of 10° K (= 0.5 to 1MeV). At such
high temperatures, some nuclei will be in an excited state prior to the interaction with a
neutrino. This can have aconsiderable effect on the neutrino-scattering cross-section (see
chapter 7).

In the spring of 1995, during a workshop at the ECT in Trento, | learned about the
"shell-model Monte-Carlo method'. It isaquantum many-body technique that allows the
calculation of exact results, up to controllable statistical and systematical errors, in much
larger model spaces than the shell-model methods based on diagonalization. Furthermore,
itisafinitetemperature method. The basic ideaof the method isto expand the Boltzmann
operator e=#" as a sum of exponentials of one-body operators. Exponentials of one-
body operators can be handeled numerically using a matrix representation for Slater
determinants. The number of termsin the sum istoo large to computethem al. A limited
sample of termsis used instead, to obtain a statistical estimate of the true quantities. The
fact that the method can take into account complicated correl ations and finite-temperature
effectsintheinitial state, makesit interesting for the study of neutrino scattering on nuclei

like'?C and?° Ne. Disadvantages of the method arethat it requiresquite alot of computer
power and that, for most systems, the calculations at low temperature are spoiled by the so
called 'sign problem’ (see section 4.5). | decided to develop a shell-model Monte-Carlo
code for the study of neutrino-nucleus scattering reactions.

In the following year | experienced that this was not at all a smple task. | spent quite
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some time on the development of an accurate algorithm for the evaluation of canonical
many-body traces. This lead to a new algorithm for the calculation of the coefficients
of the characteristic polynomial of a general square matrix, presented in section 4.3. A
second problem was the stabilization of the calculations at low temperature. A solution
was found in literature (see section 4.6.1). Together with the algorithm for the canonical
traces, it allowed a very accurate evaluation of the canonical trace of the exponentials of
aone-body operator. At this stage, calculations were performed for the Hubbard model.
(see chapter 7). Because this model has been studied extensively using quantum Monte-
Carlo methods, it served as an ided test case for the method. By the spring of 1996, |
started calculations for atomic nuclei. A model was set up for 5$Fesq, using a harmonic-
oscillator plus pairing plus quadrupole Hamiltonian, and a discrete model space with 40
single-particle states. However, the Markov chain for the Monte-Carlo sampling failed to
converge. Too many Markov steps would be needed to obtain accurate results and each
Markov step required too much computer time. for the quantum Monte-Carlo calculation
to be feasible.

It forced me to take a closer look on Markov-chain Monte-Carlo methods. This resulted
in chapter 3 of thiswork. A study of the convergence properties of Markov-chain Monte-
Carlo methods lead to a much better understanding of the convergence and to some rules
of thumb for the construction of transition kernels. | implemented a practical way to
determine error limits and optimized the number of Markov steps between successive
evaluations of observables. The possibility of variance reduction in Markov-chain Monte-
Carlo methodswas studied. In order to speed up the computation of each Markov step, an
improved sampling scheme was implemented (see section 4.6.2). In order to improve the
performance of the method, | elaborated on decompositions based on rank-one and rank-
two operators (see section 2.2.2). Asaresult, an aternative to the Hubbard-Stratonovich
transform was found, which allowed faster calculations for the Hubbard model and the
nuclear pairing Hamiltonian, among others. By the end of 1996, all these building blocks
were put together to form a powerful quantum Monte-Carlo method for the fermionic
many-body problem. The Hubbard model was studied as atest case. The results of these
caculations are presented in chapter 5. As afirst real application, the nuclear pairing
Hamiltonian was studied (see chapter 6). Excellent agreement with exact results was
obtained for the exactly solvable nuclear pairing model with degenerate single-particle
levels. Thermal properties of amean-field plus pairing model for nuclei in the Fe region
were obtained. Up to controlable statistical (number of Markov steps) and systematical
(number of inverse temperatureintervals) errors, these results amount to an exact solution
of themode at finitetemperature. As such the method ismore powerful than approximate
techniques such as BCS. Furthermore, it can handle much larger model spaces than
diagonalization techniques. A major drawback of the method is the 'sign problem’ (see
section 4.5). For most systems, it spoils the calculations at low temperature. However, |
observed that for alot of systems the method can still be used at temperatures at which
the system isalmost completely cooled to its ground state, such that thereis no need to go
to even lower temperatures.

It was not straightforward to find a good name for the quantum Monte-Carlo method.

¢ “shell-model quantum Monte-Carlo” is to restricted, because the method can be
applied equally well to other fermionic many-body models than the nuclear shell



model, e.g. to the Hubbard model.

¢ “auxiliary-field quantumMonte-Carlo” isused in literatureto indicate the quantum
Monte-Carlo methods that are based on the Monte-Carlo integration over the aux-
iliary fields o that arise in the Hubbard-Stratonovich transformation of the operator
e~P#H2 (seesection 2.2.1). Because aternative decomposititionswere devel oped for
the operator e~z that arenot based on auxi liary fields, thisnameisnot appropriate
any more.

e “projector guantum Monte-Carlo” isused in literature to indicate the method with
ground-state projection, as discussed in section 4.4. This name is not appropriate
for the application of the method in the canonical nor grand canonical ensemble.

¢ “ grand-canonical quantumMonte-Carlo” isusedinliteraturetoindicatethe method
applied in the grand canonical ensemble. This name is not appropriate for the
application of the method in the canonical ensemble nor for the ground-state-
projection method.

e “determinant quantum Monte-Carlo” is used in literature to indicate the method
applied in the grand canonical ensemble and the method with ground-state projec-
tion. The evaluation of the weights in these methods is based on the evaluation of
determinants. However, in the canonical ensemble, no determinants are needed.
Therefore this name is not appropriate either.

Because the method, in any form, is based on the expansion of the Boltzmann operator
in asum of terms that each can be handled easily using a matrix representation for Slater
determinants, | decided to use the name “ Sater-determinant quantum Monte-Carlo”

method (SDQMC) in this work to indicate the method, in any of its forms. Thus, in
thiswork, SDQMC is used as a genera term for the shell-model quantum Monte-Carlo,
auxiliary-field quantum Monte-Carlo, projector quantum Monte-Carlo, grand-canonical
guantum Monte-Carlo and determinant quantum Monte-Carlo methods.

In the near future, the improved SDQMC will be applied to the study of neutrino-nucleus
scattering reactions(seechapter 7). Another topicfor futher researchistheimplementation
of an agorithm for the inverse Laplace transform, in order to calculate strength functions
and perhaps level densities (see section 4.1). Furthermore, for the study of atomic nucle,
attention will be paid to the separation of the spurious center-of-mass motion from the
intrinsic excitations.

Thiswork consistsof two parts. Inthefirst part, the SDQM C method ispresented. Chapter
1 introducesthe basi ¢ notationsand amatrix representation for Slater determinants. Using
this matrix representation, the exponential of a one-body operator can be handled easily
inanumerical way. In chapter 2, several ways are presented to decompose the Boltzmann
operator e=PH which is generally the exponential of a two-body operator, into a sum
of exponentials of one-body operators. A self-contained discussion of Markov-chain
Monte-Carlo methods is given in chapter 3. The building blocks presented in chapters
1 to 3 are brought together in chapter 4 to congtitute the Slater-determinant quantum
Monte-Carlo method. Specia attentionis given to the’sign problem’. In the second part,
the application of SDQMC to severa specific fermionic many-body systems is discussed.
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Results for the 4 x 4 Hubbard model are presented in chapter 5. SDQMC calculations
for the nuclear pairing Hamiltonian are discussed in chapter 6. Finaly, an outlook for
SDQMC calculations of neutrino-nucleus scattering cross-sectionsis given in chapter 7.
The computer calculations for this work were performed on Digital workstations (Alpha
3000-600 and Alphastation 255/300MHz systems with a Digital-Unix operating system)
and a PC (Pentium-Pro 200-MHz processor, with a Linux operating system).






The method

Overview

Chapter 1 introduces the basic notations and a matrix representation for Slater de-
terminants. Using this matrix representation, the exponentia of a one-body operator
can be handled easily in a numerical way. The evaluation of the canonical or grand
canonina trace then amountsto the eval uation of the characteristic polynomial or the
determinant of a matrix of moderate dimensions (the dimension equals the number
of single-particle states taken into account in the model). In chapter 2, several ways
are presented to decompose the Boltzmann operator e=## | which is generally the
exponentia of atwo-body operator, into a sum of exponentials of one-body opera-
tors. In thisway, the expressionsfor thetraces of exponentialsof one-body operators
can also be applied to the Boltzmann operator. Because the number of terms in
the decomposition is overwhelmingly huge, a complete summation is impossible.
Instead, Markov-chain Monte-Carlo methods are used to draw a sample from them
and to evaluate the sum statistically. A self-contained discussion of these Markov-
chain Monte-Carlo methods is given in chapter 3. The building blocks presented in
these chapters are brought together in chapter 4 to constitute the Slater-determinant
guantum Monte-Carlo method. Thismethod allowsthe study of ground-state proper-
ties and thermodynamical propertiesin the canonical and grand canonical ensemble
of discrete fermionic many-body systems. Special attention is given to the 'sign
problen’.






Fer mionic many-body theory with
Slater deter minants

1.1 Notations

Slater-determinant quantum Monte-Carlo methods (SDQMC) are based on the expansion
of the thermodynamic partition function Z5 = Tr (e‘ﬁH of afermionic quantum many-
body system as a sum of traces of operators that have numerically manageable form.
This form is based on a matrix representation of Slater determinants. We would like to
emphasi ze the difference between the Hilbert space of many-body states and the space of
matrix representations of Slater determinants. The connection between the two will be
made through the space of single-particle states. In order to avoid confusion and to allow
a sound description of the SDQMC the following notations are used:

o U @, ... uppercase Greek lettersfor many-body states. The corresponding many-
body wave functions are denoted as ¥(.X ), (X ), with X = (zq,...,24) agen-
eralized coordinate. Note that many-body wave functions that differ by a constant
factor represent the same many-body state.

o ¢, ¢,.... lowercase Greek letters for single-particle states. The corresponding
single-particle wave function is denoted with (). Note that single-particle wave
functionsthat differ by a constant factor represent the same single-particle state.

® ©1,p2,...,pN. the basis states of the one-particle space. Ns is the number of
basis states, S = {1, 2, ..., ¢ng) iSthe set of basis states of the single-particle
space.

e M,.... matrices, in particular the representation matrices of Slater determinants,
will be denoted with uppercase Roman letters.
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o iy, &L: annihilation and creation operatorsfor aparticlein state ..
e 7, = @l ax: numMber operator for state ;.

o P =Y, [Pluila; : uppercase Roman letters with a hat for one-body operators;
square brackets around a one-body operator denote the matrix defined by [ P]; =

<50k|]5|991>-

e H.V,...: uppercase Roman letterswith a hat for many-body operators.

The following symbolswill occur often in thiswork:
e N isthe number of particles.

e (3 isthe inverse temperature, in literature sometimes referred to as the imaginary
time.

e N; isthenumber of single-particle basis states, in other words the dimension of the
single-particle space S.

e V; isthe number of inverse temperature intervals, in literature sometimes referred
to as the number of time dices.

1.2 Many-body statesand Slater determinants

1.2.1 The model space

Since computers can only work with finite discrete numbers, any numerical many-body
technique needs a discretization at some level. Even so called ' continuum RPA tech-
nigues require a discretization of the coordinate or momentum space. In the nuclear
shell model, one mainly neglects the degrees of freedom of the deeply bound nucleons.
Only afew valence particles distributed over a number of valence-orbitals, in the outher
shells of the nucleus, are taken into account as degrees of freedom of the system. One
then constructs a model space of configurations of these valence nucleons with a definite
rotational symmetry. The Hamiltonian is diagonalized in this modelspace in order to
determine energy-levels and other observables. Though thisis a serious truncation of the
complete many-body space, the shell model, especially around half-filled shells, still leads
to model spaces that can hardly be handled with present day computers.

In SDQMC, the basic discretization is done on the level of the single-particle states: one
considersonly alimited set S of discrete single-particle states. These states can be energy
eigenstates in a mean-field potential, as in the nuclear shell model; they can be sites on
a cristal lattice as in the Hubbard model; they could be momentum eigenstates in other
applications. The many-body states are constructed by distributing NV particles over these
N5 single-particle states. Their wave functionsare antisymmetric functions ¥ ( X ) onS¥,
with X = (z4,...,2x) ageneralized coordinate, z; € S for: = 1,..., Ns. Thisleads

to afinite discrete Hilbert space # with dimension Ny = (Y ) = Ns!/ [N!(Ns — N)].
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Thisisthe model space for SDQMC. On high-performant computers SDQMC can handle
systems with 100 particles distributed over 200 single-particle states, leading to many-
body spaces of dimension 10%°. Diagonalization techniques are limited to systems with
anumber of many-body states of the order of 106. This indicates the power of SDQMC
methods.

1.2.2 Sater determinants

A special set of many-body states is formed by the states whose wave function can
be written as an antisymmetrized product of N different single-particle wave functions.
These states are called Sater determinants. A neccesary and sufficient condition [1] for
afermionic many-body state W to be a Slater determinant is

\I;(ylay%xi% . -,xN)lI;(yg,'!,M,Ig, S a'xN) +
\I/(’yg,yg,I:g, .. '7$N)\I;(y1ay4ax37 B 7xN) +

U(ys, y1, 23, ..., 2N)V(Y2,Ya, 3, ..., 2n) =0 (1.0
for all values of the coordinates s, ..., xn, y1,...,ys. If U(X) isthe antisymmetrized
product of N single-particle wave functions ¢1 (), . .., ¥ n(z) then ¥(X') can be written
down as

’¢1(I1) ‘¢1($N)
U(zy,...,2n) = det : : , (1.2
Ynl(e) - dnlen)

a notation first used by Slater. Hence the name ’ Slater determinants’. We will use this
term to refer to the many-body state ¥, not just to the determinant used in 1.2. For aSlater
determinant ¥, a set of unnormalized single-particle wave functionsis given by

withY = (yi,...,yn) afixed point in SV, ¥(Y) # 0, and Y},,_,; the point obtained
by replacing y; in Y with x. For every Slater determinant ¥ there exist many sets of
single-particle wave functions, to every set {¢1(z),...,¥n(z)} of linearly independent
single-particle wave functions corresponds one Slater determinant.

1.2.3 A matrix representation for Slater deter minants

Because the single-particle space is finite and discrete, single-particle wave functions can
be represented by Ns-dimensional column vectors:

(p1])

<992:|¢> (1.4)

(onsl¥)

This leads to an interesting matrix representation for Slater determinants: If ¥(.X) isthe
antisymmetrized product of ¢1 (), ..., ¥n(z) then ¥ can be represented by the Ns x N
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matrix M given by

(prlvn) - (erlvw)

U (1.5)

(onaln) - (oslion)

Every Slater determinant ¥ can be represented by many different Ns x N matrices, to
every non-singular Ns x N matrix M correspondsone Slater determinant ¥ ;. Singularity
of M would mean that two or more particles occupy the same single-particle state, which
is forbidden by the Pauli prinicple. This matrix representation for Slater determinantsis
useful because of two properties:

¢ the overlap between two Slater determinants can be written as the determinant of
the product of the representation matrices:

(Uag, | Wag,) = det (MlT MQ> : (1.6)

e the result of the exponentia of a one-body operator P working on a Slater deter-
minant ¥,, can be represented by the operation of the exponential of an Ns x Ng
matrix P on the matrix representation M of of U y,:

PUyr = Uap, (1.7)

with the matrix M’ given by )
M' = elPIM. (1.8)

Here [P] isthe Ns x Ns matrix defined by
[Pi; = (¢:] P|6;). (1.9)

Thislast property isacorollary of the’ Thoulesstheorem’ which statesthat the exponential
of a one-body operator transforms Slater determinants into Slater determinants [2]. It
congtitutes the cornerstone of SDQMC: the representation of exponentials of operatorson
the many-body space ‘H by operations with matrices of dimension Ns x Ns or Ns x N.
Note that in general

\I;M1+M2 7é \I;Ml + LI;MQ' (110)

A specia set of Slater Determinants is formed by the Slater Determinants that can be
represented by a matrix with one element set to 1 in every column and the other elements
set to 0. This sat, which we will denote with Dy, constitutes a basis for the entire Hilbert
Space.

1.2.4 Many-body tracesof exponentials of one-body operators

The matrix representation for Slater determinants allows a handy way to calculate the
many-body trace of the exponential of a one-body operator.
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Let {7 be an operator that transformsa Slater determinant ¥ »; represented by the N x N
matrix M into the Slater determinant U, represented by the matrix M’ = UM, where U
isan Ns x Ng matrix. An example of such an operator U isthe exponentia of aone-body
operator, or a product of exponentials of one-body operators. The N-particle trace of the
operator 7 is given by

A A NH ~
Try (U) = (@0 @), (112)
=1
where {®,,. .., ®y,, } isacomplete basisfor the V-particle Hilbert space 7. Onesuch a

basisisthe set D,. These Slater determinantsare represented by matrices{ By, . . ., By, }
which have in every column one element equal to one and al the other elements equal to
zero. The trace now becomes

Try () = > _(@:]U]®;) (112)
=1
Ny X
= Z<\I}31 U|\IJBI‘> (113
=1
Ny
= 2 (¥p|Vyp,) (1.14)
=1
Ny
= Y det (BIUB). (1.15)
=1
Because of the special form of the matrices By, . .., By;,,, thistrace isjust the sum of all

diagonal minors of rank N of the matrix U/, which is nothing el se than the coefficient of
x¥ in the polynomial det (1 + xU/). So we obtain that

AR ,
fro (17 = 12 det 1+ x0)

(1.16)

x=0

In athermodynamical |anguage this N-particletraceis called the canonical trace, sinceit
concerns a system with a fixed number of particles. If we extend the trace to states with
any number of particles, N ranging from 0 to Ns, we get the grand canonical trace. The
grand canonical trace for a given chemical potential . and inverse temperature 3 is given

by

Troe, (0) = 3% ey (0) a17)
N=0
s EAR »
— %: (eﬁ#>N (dx> di:ffl +xU) (1.18)
N=0 .
x=0
= det (1 +¢™U). (1.19)

The properties of the matrix representations for Slater determinants allow us to calculate
the canonical and grand canonical trace of the exponential of a one-body operator using
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linear-algebra techniques for matrices of dimension Ns. The amount of computing
time needed for these techniques scales as N2. Therefore the computing time remains
reasonable even for large model spaces.

1.2.5 Bosonic many-body states

Just like Slater determinants have wave functions that can be written as an antisym-
metrized product of single-particle wave functions, some bosonic many-body states have
wave functionsthat can be written as a symmetrized product of single-particle wave func-
tions. These bosonic states can be represented by Ns x N matricestoo. Non-singularity
of these matricesisnot required because the Pauli principle does not apply to bosons. The
property 1.7 also holds for these states, but there is no bosonic analogy to property 1.6
and no simple algebraic expression for the canonical or grand canonical traces analogous
to expressions 1.16 or 1.17 exist. The evaluation of the overlap between bosonic wave-
functions would require the calculation of the ' permanent’ of the matrix M M,. (The
permanent of a Ns x Ns matrix M isthe symmetric analogon of the determinant. Itis
givenby >, My, Mo, -+ M Nsmag s where the sum runs over all permutations = of the
set {1,2,...,Ns}.) The amount of computation time needed for the evalutation of the
permanent grows exponentialy with Ng [3], so that calculations for large model spaces
become impracticable. Therefore the SDQMC method has no analogon for bosons.
Thereare however other Monte-Carlo techni questhat can be applied to bosonic many-body
problems. A lot of these techniques are based on a Monte-Carlo sampling of many-body
statesinstead of asampling of the many-body interactions[13]. Compared to Monte-Carlo
methods for many-fermion systems, Monte-Carlo methods for many-boson systems have
the advantage that they do not suffer from’sign-problems’ (see section 4.5).



Decomposition of the Boltzmann
oper ator

2.1 Exponential of a sum of non-commuting operators

If the Hamiltonian £/ would be a one-body operator, we could use the express ons from
the previous chapter to calculate the properties of the Boltzmann operator e ¥, This
operator isinteresting because it contains all the thermodynamic information of the many-
body system. The thermodynamic partition function of the many-body system is given
guantummechanically by thetrace of thisoperator (in the case of zero chemical potential):

Zg =Tr (e=?1). (2.1)

Here, 3 has to be understood as the inverse temperature. Thermodynamic quantities as
theinternal energy U, the free energy A, the entropy S and more, can be derived from 7
(see section 4.1):

_ 9In(Z)
U= - (2.2)
A = _hl(;ﬁ), (2.3)
S = BU—A). (2.4)

Units were chosen such that the Boltzmann constant £ = 1. Another way to use the
operator e?H isto seeit as an operator that projects onto the many-body ground state:

Vg, ~ e PHY, (2.5)

for large # and for any many-body state ¥ that has anon-vanishing overlap with W z,. The
components of energy eigenstates W z with a higher energy £ are suppressed by a factor
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e~ P(E=Fo) 3o if we could evaluate the Boltzmann operator accurately, we would have
away to obtain both thermodynamical and groundstate information about the quantum
many-body system. Our aim isto do this by decomposing e~ as a sum of exponentials
of one-body operators. These operators can be handled easily in the Slater-determinant
representation introduced in the previous section.

In many-body theory we are mostly dealing with two-body Hamiltonians, or even three-
body Hamiltonians. In this work we concentrate on the former. A first step will be to
separate the easy one-body part 7, of the Hamiltonian 7 = H, + H, from the more
difficult two-body part H, in the expression for the operator e =#H. If H, and H, would
commute, we could write

o~ B(H1+Hs) _ —BH1 —BH, (2.6)

In general however A, and £, will not commute. For small values of 3, and to second
order in 3 we can write:

N o N 2 32 A A
¢mAU+H:) — o—fH1—fHz % [H%Hl] + O(ﬂg)- (2.7)

This means that expression 2.6 has an error of the order of 32. We can reduce this error
to third order in 3 by using the Suzuki-formula[4]:

e~OUI+H:) _ =5 ~0M2 =5 | g3 2 (2.8)
where the error term R can be estimated by

| [22,, [, )] ||+ 21| [, [, 1)) )
24 '

Expressions that are correct to even higher order in 3 can be derived [3], but they require
more factorsin the expansion of e=## (already 9 factors are needed to reduce the error to
order 3*), which makes these expressions practically uninteresting.

Expression 2.8 isonly useful for small valuesof 5. At higher values of 3, we need to split
up the inverse temperature 3 in a number of inverse temperature intervals. In literature,
also the term imaginary-time intervals is used. Let N, denote the number of intervals.
This leads to the Suzuki-Trotter formula[7]:

(2.9)

1] <

A A 3 3 Nt
e~ P(H1+H2)  _ <€—Nﬂt(H1+H2)) (210)

Lf, _Bp, 8 g\
- Hy —++Hy — H / >
= (6 2N 16 Ny 26 N, 11 + N_BR) (211)
13
B 1 B8 7 B8 7 B8 7 B 7 B 7 B 7
= e_mHl e_JV_':Hze_VtHle_N_Y:Hz cee e_JV_'rHle_JV_Y:HQe_mHl
83

N

N_gR/' (2.12)

_|_
In SDQMC abal ance hasto be found between computational effort and accuracy. Because
matrix multiplications can be quite computationally demanding, the number of factorsin
the expansion of ¢=## will determine the computational effort needed. It can be seen
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from 2.12 that the expression 2.8 does only lead to one more factor than expression 2.7,
while its error is an order 3/N; smaller. We therefore recommend to keep the error in
every interval of order (3/N;)?, also in the decomposition of e ~##2 that will be described
in the next section.

We could use an expression with an error of the order (3/N,)* per interval. If weinsist
on keeping the total number of factorsequal to the number of factors we would have with
expression 2.12, we could use only N, /4 intervals (we would have 9 factors per interval;
taking together the factors at the borders of two intervals would lead to 8 factors per
interval, compared with 2 factors per interval for expression 2.12). Thetota error would
be of the order of 3*/(4N;)3. This error would be comparable to the error in the Suzuki-
Trotter formulaif N, ~ 643. For most applications, a smaller value for N, is sufficient,
so that the Suzuki-Trotter formulais more efficient than higher order approximations.

2.2 Decomposition of exp(—G H>)

In this section we will show how the exponential of the two-body Hamiltonian can be
decomposed as a sum of exponentials of one-body operators:

exp(—%ﬁg) = ZeA". (2.13)

If we apply this decomposition to every factor exp(— %Iﬂ) in2.12, we obtain
> ¢ Aoy o~ Ay R Aoy, o

01,0200y T Ny

= Y eSO =Y 0, (2.14)

exp(—ﬁff)

12

The operator [/, is a product of exponentials of one-body operators and as such an
exponential of a one-body operator S, (3) itself. Therefore it can be represented by a
Ns x Ns matrix U,. Thisallows usto use the expressions for Tr (Ug) derived in chapter
1

The decomposition of the exponential of — 3/, can be achieved in many different ways.
Since we will have to evaluate the sum with Monte-Carlo techniques, there are a few
guidelinesfor choosing a decomposition:

¢ A decompositionthat isexact ispreferableto acompositionthat isonly approximate.
Since the Suzuki-Trotter formula 2.12 leads to an error of the order of 32, it is
recommended to keep the error of an approximate decomposition at least of the
same order.

¢ A decomposition where al terms have asimilar structure is preferable to a decom-
position which has terms of very different nature, since the former can be expected
to lead to smaller variances in the Monte-Carlo eva uation.
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A decomposition with less termsiis preferable to one with more terms, since it can
be expected to lead to smaller autocorrelation timesin the Monte-Carlo evaluation.
This might conflict with the previous guideline: sometimesiit is preferable to have
more but smoother terms in the decomposition.

¢ Decompositions should be devised to reduce sign problemsin the Monte-Carlo eval -
uation (cfr. section 4.5). Sometimes certain symmetries guarantee the positiveness
of the traces of the termsin the decompositions. In those cases it is recommended
to use a decomposition that conserves this symmetry in every term.

e Since matrix multiplicationstake most of thetimeinthe actual calculations, decom-
positions that lead to sparse matrices are preferable to decompositions that lead to
dense matrices. Sometimes certain symmetriesallow to calculate thetrace of aterm
by using only part of the matrix that representstheterm. This can reducethe compu-
tation time considerably. In those cases it is recommended to use a decomposition
that conserves this symmetry in every term.

e For schematic interactions, the structure of the Hamiltonian often suggests aspecific
decomposition.

In the next sections we will highlight certain ways of constructing a decomposition for
general Hamiltonians.

2.2.1 TheHubbard-Stratonovich transform

This decomposition isdueto R. L. Stratonovich [8]. It was applied by J. Hubbard to the
partition function of quantum many-body systems[9].

The Hubbard-Stratonovich tranform for a single quadratic Hamiltonian

If [, isaquadratic operator, i.e.

A

H, = — A2, (2.15)
with A aone-body operator, then the following idendity holds:

Y A2
o—BHs _ 542 _

1 22 5. /84
— e 2 e do. 2.16
V27 /—oo ( )
This expresses the exponential of a two-body Hamiltonian as a continuous sum of ex-

ponentials of one-body operators. It is an exact decomposition, which can be seen by
expanding in orders of A: for the ;** term in the expansion one has

04 = 0A! if i is odd,

. . I R o2 PN e .
L_p3A = L [t®4e"Fdo B3 A" ifiiseven.
(z/2)! ! i/2m S =0 !

(2.17)

Instead of the continuous sum over the auxiliary field o, one can use a discrete decom-
02 - .
position. Thisisachieved by replacing [~ e~ = do with a Gaussian quadrature formula.
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It has been found that discrete decompositions lead to shorter autocorrelation lengths and
faster convergence in the Monte-Carl o eval uation than continuous decompositions|[ 7, 10].
If we want the error to be of order 32, we need a Gaussian quadrature formula that is
exact at least up to 5t orderino. A 3-points quadrature formula suffices. Thisleadsto a
discrete Hubbard- Stratonovich decomposition:

4 + e"'\/@fi + e_\/@fi

eBHz — oA’ . + R(B), (2.18)
with the error given by
, 3% .
R(B) = BAG + higher order termsin 3 (2.19)
33 . . .
= —’1—5H§’ + higher order termsin 3. (2.20)

If we compare this error to the error originating from the Suzuki-Trotter formula2.12, we
seethat theformer will bethe dominant one. It might thereforebe useful to use afour-point
guadrature formulain order to reduce the error and to obtain a good convergence:

BT A2
(Bl _ A _

+V(V6+2)VEBA | =/ (V6+2)V/B3A +V (V6-2)V6BA | —/(V6-2)V/BBA
€ + e n € + e

26+ 276 26— 276
+R(3), (2.21)
with the error given by
R(3) = EAS + higher order termsin 3 (2.22)
34
= 1%—5]{;‘ + higher order termsin 3. (2.23)

Extens on of the Hubbard-Stratonovich decomposition for a sum of squares
of commuting operators

If the two-body Hamiltonian is minusasum of squares of commuting one-body operators,

Hy=—-A*— A2— ... — A%, (2.24)
with o
[Ai, Aj] =0 foralliandj, (2.25)
we can apply the Hubbard-Stratonovich decomposition 2.16 to every quadratic term
Seperately:
o~ PH>

A(AT+ A3+ +4Z)
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_ (OATPAL L BA,

i (h5) | _
= 77)7,//"'/6_ 2 e‘”\/ﬁA1 ---e"m\/z_ﬁAmdaldag---dam
(var)

= W//_../G_Me\/ﬁ(JlAl+...+0'mA;n)do.ldo.2 i --dam. (2.26)

N

Note that we made explicit use of the commutativity of the operators A, As, ..., A, in

step 2 and 4 of 2.26. We obtain a decomposition of the form
et = / G(U)eA“da, (2.27)

where
o = (01,02,...,0m), (2.28)
B (o§+...+ofn)
Glo) = “ o (2.29)
T

Ae = 28 (oiAi+ .. 4 omAy). (2.30)

The integral over every variable o; can be replaced with athree- or four-points Gaussian
quadrature formula in order to obtain a sum over discrete auxiliary-field configurations.
The Hubbard-interaction is a typical example of a Hamiltonian of this type (see chapter
5).

Extens on of the Hubbard-Stratonovich decomposition for a sum of squares
of non-commuting operators

If the two-body Hamiltonian is minus a sum of squares of non-commuting one-body
operators, it is tempting to use the formula 2.26 in this case too. Now however it has an
error of order 2. We illustrate this for the case of a sum of squares of two one-body
operators. Let

Hy=—A? — A2 (2.31)

with
C = [A1, 45) #0. (2.32)

Application of formula2.26 resultsin
U.2+02 ~ ~
ZL//e_(giﬁe\/;ﬁ(glflﬁ”’%)doldm =
™

s(azedz) L B2 (rs 14 o N B2 2
) 1 2 (L [ ]}, - (e [ ]}, ) - 5
+higher order termsin . (2.33)

This shows clearly that 2.26 leads to an error of order 3?2 if the one-body operators do not
commute, evenif theintegration over the auxiliary fieldsis not replaced by adiscrete sum.
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The error can be reduced to order 3° in several ways. First of al, the Suzuki formula2.8
can be used to split the exponent:

SUATHAE) (A AE T4 | ()
! AEA) o s /B o
= 73///6 2 et 1e72 2¢%3 tdoidoydos
(\/‘277

+0(5%). (2.34)

If H, is minus a sum of squares of m non-commuting one-body operators, then we
need 2m — 1 auxiliary fields and exponentia factorsinstead of m auxiliary factorsand 1
exponentia factor if we want the error to be of order 32 instead of 32.

A similar way to reduce the error to order 32 is obtained with

A2 A2 1 2 1
PSR o 5A2+2 At L 0(8%)

— 4 // U +U (eﬁ\/ 284, 602\/2»3:42 + 602V2ﬁA2601V 25141) doydoy
Vs

+O(5?). (2.35)

With this decomposition we need only m auxiliary fields and m exponentia factors if
we want the error to be of order 53. But now we have to sum over different orderings

for the operators A, . .., A,.. Inthe Monte-Carlo evaluation we will now not only have
to sample the auxiliary-field configurations but also the ordering configurations for the
operators Ai, .. Ay, (ascending or descending order).

If the operators A are dense, the construction of the exponential operatorswill require a
big computational effort. The fact that 2.34 and 2.35 lead to 2m + 1 or m exponentials,
isin this case a serious disadvantage. A decomposition with an error of order 32 which
needs only one exponential can be constructed by adding terms to the Hamiltonian that
lead to a cancelation of the lowest order error termsin 2.33:

ﬁ(A2+A2) —
/// 5[01 (A1——[A2 ])-I—CTQ(AQ-I- [ ])]-I_ggﬁédO'ldO'QdO'g
277
+0(33) (2.36)
The operators A; and A, are modified and an extra operator ¢ and auxiliary field o3 are
introduced. For a Hamiltonian with m squared operators Al, . ,Am, the m operators

have to be modified, which poses not much problems since this can be done once for all
operators before the Monte-Carlo sampling isdone. But m(m — 1)/2 additional operators
[A;, A;] and as much auxiliary fields have to be introduced. If the operators A, ..., A,
form aclosed algebra, i.e.

N A

[A:, A mek Ay, (2.37)

then these additional operators can be absorbed in the modified A, ..., A,,. Inthat case
no additional auxiliary fields and operators are needed to reduce the error of the extended
Hubbard-Stratonovich transformation to order 32. The Hamiltonian of the pairing force
in nuclear physicsis atypical example of this situation (see chapter 6).
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Extension of the Hubbard-Sratonovich decomposition for a general two-
body Hamiltonian

In this subsection we prove that any Hermitian two-body Hamiltonian A, can be written
as a one-body operator minus a sum of squares of one-body operators. This means
that the Hubbard-Stratonovich transformation can be applied to any Hermitian fermionic
two-body Hamiltonian.

Let A, be given by

Hy= Y Vigmaélalai,,. (2.38)

Because £, is Hermitian, we can impose without loss of generality
Vintik = Viigr- (2.39)

J
Now we introduce two-dimensional indices A = (j,1), ¢ = (m, k) and the N2 x N2
matrix V:
V,\H = V(j,l)(m,k) = Vikmi. (2.40)
If weinterchange A en 1 we get from 2.39

Via = Vi) = Vimtje =V,

7kml

= VA*#. (2.41)
This means that V' is a Hermitian matrix in the indices A and ;.. From linear algebrawe
know that a Hermitian matrix can always be brought in aform

Vi = Z 61,’01,)\‘0:#, (2.42)

with ¢, areal number, eg. by diagonalisation or by aLDLT factorization [11]. Using
thisform for V' we get

A

Atata
Hy, = Z Zeyvy” vy aakalam

Lkdm Vv

- _Zey (ZU ]laal) (Zvymk&& )+Zey > VGV ) Ok

v 1,kdm
€y
- — Z 5 {A,, Ay}+ + B (243)
with
Ay = Zvu(j,l)&}&l (244)
7l
and the one-body part
+ Vi
Z ”“”“ k) ot Jal. (2.45)

gl

Each term & {Ay, AI}+ can be written as a sum of squares of operators. If ¢, > 0 asa
sum of squares of two Hermitian operators:

2
Saeary, =5 o ay

L /e (A, - 4*)] , (2.46)

2
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and if ¢, < 0 asasum of sguares of two anti-Hermitian operators:

_|_

¢

2 2
g{/ay,fiz}f[i ol (4, )|+ |yl (A—Ai)] e

We can makeall ¢, positive (negative) by adding a positive (negative) constant ¢ timesthe
unity matrix to the matrix V. This corresponds to adding an operator

—c Y Sdtafai, = —c) dlaliga; = —c (N* = N) (2.48)
A=(5,0),u=(m,k) 5k

to the Hamiltonian, with N' = ¥, ala; the number operator. It commutes with 7, and

H,. Inthe canonical pictureitis ascalar factor, so it can be handeled easily in SDQMC.

There is still more freedom to decompose H,. Because '} aji,, = alalaa;, we can

alter V' according to

Vitkwt = Vigmu + ¢
‘/kjlm — Vkﬂm—c, (249)

with ¢ a complex number, without changing its physical content. The matrixelements

Viimi» Viru or Vi have no physical meaning for fermions, so they can be given any value.
Thiswill lead to adifferent decomposition of H,.

2.2.2 Decompositionsbased on rank one and rank two operators

Rank one operators

We use the term "rank one operator’ for aone-body operator of the form 4!, with
by = bijig, by =" byjii;. (2.50)
f i

An operator of this form can be handled easily in the matrix representation for Slater
determinants introduced in section 1.2.3 because it can be represented by an operation
with amatrix of rank one:

1+ ablby ¢ 1+ 2[blby] = 1 + zblby, (2.51)
where b; and b, are considered as row vectors. Thus matrices of rank one are related

to one-body operators of rank one. Since our aim is to construct representations for
exponentials of operators, it isinteresting to notice that

b 4 <e—ﬁ{él,62}+ _ 1> bhy = 14 <e—5b261 - 1> bib,. (2.52)

The exponential of arank one operator can be represented by arank one matrix operation.
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Rank two operators

One can extend the expressions of the previous section to higher order operators. We use
the term ’rank two operator’ for atwo-body operator of the form 4! b5,b,. The reason for
thisisthat such an operator can be represented by theidentity matrix plusamatrix of rank
two, apart from a contribution of rank one operators.

Lemma 2.1 The operation represented by the unity matrix plus a matrix of rank two can
be expressed as a combination of rank one and rank two operators in the following way:

Proof:
Consider the N-particle Slater determinant ¥ ; represented by the matrix M.

Consider also a Slater determinant W 5 from the basis set D,, with particles
in the single-particle states ¢;, , ¢i,, - - -, @ir. Theoverlap of ¥y, and U is

given by
My My, - My
My, My, - M,
(Wplwa)=| . (254)
My Mgy -+ Mign

The operator 2.53 transforms W 7 into Uy with M’ = (1 + 2bibs 4+ yblbs) M.
To calculate the overlap of ¥, with ¥ 5, we have to replace every column ¢;
in 2.54:

A/fill M! .
/
M, , M

M; M!
MZ-“- —I— .‘lszfll(b4l‘/f.j) —I— ‘yb;‘ﬂ(bgﬁ‘[]‘)
]\/[izj + .‘171);-;1(541‘/[]') + ‘yb?ﬂ(bgl‘[]‘)

My + abf (baM ;) + yb7, (b3 M ;)
= ¢ +a;b] +y;bl, (2.55)

with
Ns
T; =2 E bk4ﬁ‘/fkj (256)
k=1

Ns
yi =1y Z bkngj. (257)

k=1
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The notation M ; denotes the vector that is given by the j* column of M, b
denotesthe N x 1 row matrix (b;, b;, - - - b;,, ). The overlap isthen given by

<\I’B|\I’M'>= cl—l—:rll;I—l—yl?);r c2+x2?)1—|—y21~)£ cN—I—xNEI—I—yN?)J;

(2.58)
This determinant can be expanded as the sum of al determinants that are
obtained by selecting in every column of 2.58 one of the terms ¢;, z;b! or
y;b}. If inmorethan onecolumntheterm z ;! isselected, then the determinant
has two linearly dependent columns, so it will vanish. The same for the term
y;b1. Only four types of determinants remain:
e cisselected in every column. Thisdeterminantisjust (¥ g| W), 2.54.
e z;b! isselected in column 7, ¢ inall others. These determinants sum up
to (U 5|zbibs|¥y,) (one particleis moved from state b, to state b;).
e y,b} isselected in column j, ¢ in all others. These determinants sum up
to (U 5|yblbs| Wy, (one particleis moved from state b to state by).
e z;b! isselectedin column 7, b} isselected in column &, c in all others.
Thesedeterminantssumupto (U g |zyb! b} bsbs| ¥y, ) (particlesaremoved
from states b, and b5 to states b, and b,).
Taking all these terms together, we find that

(Up|Ua) = (Up|l + xblby + yblbs + zyblbibsba| U ay). (2.59)
This holdsfor any basis state ¥ g, so that
Wypr = (1+ oblby + yblbs + wyblblbsbs) Wa. (2.60)
This proves 2.53.
End of proof.

Therelation 2.53 can now be used in several waysto obtain auseful decomposition for the
exponential of ageneral two-body Hamiltonian. A first approach is based on exponentials
of rank two operators.

Decomposition for a single rank two operator

In order to make a connection with the exponential of arank two operator, we look at the
sguare of such an operator. Let the operator P be given by

Then the square of this operator is given by

= ({0}, (B}, — {310}, (B0} ) bbbt

= 4P, (2.62)
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with ~ given by
7 = (bab})(bsb}) — (bab})(bsb]). (2.63)
By repeated application of this expression we obtain that
pr=4"1P, (2.64)

If we apply this to every term in the series expansion of e~ wefind
e PP =1+ [e‘m — 1] P. (2.65)

Now we can use the relation 2.53 to obtain a matrix-representation decomposition for
eAP:

L+ 2blba + ybibs| + [L — 2blbs — yblb
— 2 )

e~ PP

(2.66)

if x and y are chosen such that
azy =e P —1. (2.67)

Decomposition based on rank two operatorsfor a general two-body Hamil-
tonian: first possibility

Any two-body Hamiltonian H, = 34, VikmidliLid,, can be written as a sum of rank
two operators Py, P,, ... Py. A trivial example, with N4 terms, is given by

Pikgm = &}&Z&l&m. (2.68)
Expansions with less terms will often be more useful. For any Hamiltonian, decomposi-
tionswith a most N3 /2 terms can be constructed. We can factorize e ~*"2 as a product

of exponentials of rank two operators, just like we did in section 2.2.1 for a Hamiltonian
that is asum of squares of one-body operators, e.g. for non-commuting Py s:

e P2 n =3P =8P =B Pua1 —FPM = 5Pur L =8P =8P (2.69)
For each of these factors we can use the two-term decomposition 2.66. This leadsto a
decomposition for e=##2 with 221 terms of 2 — 1 factors.

The discrete Hubbard Sratonovich transformation of Hirsch

A specific example of this type of decompositionsis the ’discrete Hubbard Stratonovich
transformation’ introduced by Hirsch for the two-body Hamiltonian of the Hubbard model
[14]. The single-particle basis states ¢, have a spatial part that is a point on a lattice
(index ¢) and a spin part (index s, 1 or | ). The two-body Hamiltonian has the form

Hy, =UY fugii, (2.70)

with 7n;, the occupation number operator for the state ;-

fiis = Gl g, (2.71)
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The Hirsch decomposition is given by [13, 14]

o—BUMR 5 3 e2a0 (=) =GR (r i) (2.72)
o==%1

30U

tanh’(a) = tanh %, (2.73)
for U' > 0 and
o~ BUyiy l e2aa(ﬁ1+ﬁ1—1)—%(ﬁ1+ﬁ1—1)7 (2.74)
2c‘r:il

B3U

tanh’(a) = —tanh T, (2.75)

for U < 0. Though the name ’discrete Hubbard Stratonovich transformation’ might
suggest that thisdecompositionisadiscretized approximationto the Hubbard Stratonovich
transformation 2.16, it isactually an exact decomposition of thetype2.66. Thevauesfor x
and y that correspond to this decomposition can be cal culated by applying expression 2.52
to the right hand sides of 2.72 or 2.74. The advantage of this parametrization compared to
the ones with other valuesfor = and y, isthat the resulting matrix representation U,, (not
to be confused with the interaction strenght parameter /) in 2.14 splits up in a spin-up
and a spin-down part that are related to one another:

(U, 0
Ug_( . Ulg). (2.76)

In the case of negative U we have that U, = Uy, and in the case of positive U we have
that U, = (UT‘;) - Thismakesthat only half of the matrix has to be computed in order

to calculate Tr ((70) , Which saves alot of computing time. Furthermore, it guarantees a
positive sign for systems with negative U and an equal number of particlesin spin-up and
spin-down states and for half-filled systems with positive U.

Decomposition based on rank two operatorsfor a general two-body Hamil-
tonian: second possibility

Theinteresting point inthe decomposition of the previous section isthat the exponential of
arank two-operator is again arank two operator, plus the identity operator. This property
not only holds for rank two operators, also for any two-body operator P of the form

P =Y Viyilalbsbs. (2.77)
ik

The square of such an operator is given by
P2 =Y Vigalalbsba Vi, bsbs
jklm

= ik Vim | @ b A:rnAB - &mA4 &zAB &j&kA3A4
S ViV ({a}b4}+{a b}~ {at b}, {alb }+> fa1h 7

jkim
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= 3 Vit Vi (barbam — bambar) aalbabs

Tkim
= P, (2.78)
with ~ given by
Y= Z ‘/}m (b4lbgm — b4m631) = bZng — bgVZM (279)

Im

Again we find that )

=1 —] P (2.80)
The right hand side is a sum of rank-two operators. We can decompose it as a sum of
operators of type 2.53:

8P _ ij G(U) [1 + I.Ubiob‘l + yabgobi%]

€ , 281
ZJ’ G(J/) ( )
provided that G/(o), z, ,y» and by, by, fulfil the following requirements:
>, G(a);vg?)L?u
, 2.82
ZG/ G(O’l) 0 ( )
ZO’ G(U)ygi)goi)?}
2.83
EO" G(U/) ! ( )
20 G(U>l‘0y0éloi)£a
(o = | ]kaa Ll (2.84)
An obvious decomposition of thistypeis obtained by taking all G(o) = 1 and
R 1+=z -katb4 + y-kaTbg] + [1 —x -kaT-b4 - y-kaTbg]
—BP _ [ JRY g JIEYE JRY g Yk 2
e 2}; N2 , (2.85)
J
with
Tjp = Ns \/| By — 1 jk| (286)
yir = sNs \/| == 1) Vil (2.87)

with s = +1 or —1 depending on the sign of (e—ﬁﬁ — 1) Vir. Depending on the specific
form of the interaction, other choices of G/(¢), z, ,y, and b1, ba, Might be better suited.
E.g. it isrecommendable to include as much as possible the variation of the strength V;;,
in the factor w,. Thiswill lead to a more effective and smoother Monte-Carlo sampling,
with more weight attributed to the important parts of the interaction.

A general two-body Hamiltonian can always be written as a sum of operators of the form
2.77. At most N2/2 terms are needed. For schematic interactions less terms will be
needed. E.g. the pairing Hamiltonian requiresonly Ns/2 terms. Again, we can factorize
e~AH2 asaproduct of exponentials of operatorsot theform 2.77, just likewe did in section
221o0r222.
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Decomposition based on rank two operatorsfor a general two-body Hamil-
tonian: third possibility

The expression 2.53 can be used to construct a representation for the operator 1 + dﬁ{z,
with H, ageneral two-body Hamiltonian. Suppose that we have a decomposition for H,
as asum of rank two operators:

Hy =" Vabt,bE,baybyy. (2.88)
A

Then 1 + ¢H, can be represented as

. >, Glo 1+xngobg+'b.Tobg
|+ e, = ()] - G}(J/“) Y0700 (2.89)

provided that G(co), =, ,y, and the b;, fulfil the following requirements:

> G(J)IJZA)I ?)45
a a 2.

., Gl(o) 0 (2.90)

Zcr G(O->y0?)£ ?)30
g 0 291
> G0 (2.91)

> G(J)x(,ygi)h?)gglsggiug .

= H,. 2.92
EO’I G(UI) ? ( )

Furthermore all coefficients (o) have to be positive real numbers in order for Monte-
Carlo methods to be applicable. If H; isgiven by

Hy =Y Vigmélalainm (2.93)

jklm

then an obvious decomposition of thistype is obtained by taking all G(o) = 1 and

[1 + Ijkmla}am + yjkmlazal] + [1 — I‘jkmla}am - yjkmlazal]
2N ’

l+ef, =Y (2.94)

Tkim
with

Tikmi = Ni\/|Virmi] (2.95)
Yirmi = SNG\/|€Vieml, (2.96)

with s = +1 or —1 depending on the sign of €Vj;,.;. However, this leads to large values
for = or y because of thefactor N2 intheright hand side. It isbetter to use decompositions
with lessterms. Furthermore, it ishere also recommendableto includeas much aspossible
the variation of the strength in the factor G(o).
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Now that we dispose of an exact representation for operators of the form 1 + ¢H,, wecan
approximate e ~*H2 with combinationsof operatorsof theform 1+ ¢ ;. An approximation
that is correct up to second order is given by

. 1+ (1= ,81312)2
e P2 5 . (2.97)
The leading error term is given by
32 .
’FHS. (2.98)

Though this error is of the order 32, it is in most cases quite large compared to the
error originating from the Suzuki-decomposition 2.9, since the latter is a combination of
commutatorsof operators, whiletheformer isamereproduct of operators. Weexperienced
avery slow convergence when increasing the number of inverse-temperatureintervals, V;,
when we applied this decomposition to the repul sive Hubbard model.

Because such decompositions have errors proportional to powers of BH,, they can be
expected to be more effective than the decompositions of the second type only if the
two-body part of the Hamiltonian is small compared to the one-body part.

Better results were obtained with a fourth order decomposition:

19450 (1-266,)" +3(1 - h,)’
7 |

e‘ﬁH? ~

(2.99)

Now theleading error term is of the form

B> .
ety - 2.1
120 2 (2.100)

2.2.3 Comparing the decompositions

We discussed a variety of ways in which the operator ¢=#"2 can be decomposed for
SDQMC calculations. These decompositions still have many degrees of freedom. Fur-
thermore, one can combine them and obtain hybrid decompositions. E.g. the pairing
plus quadrupole Hamiltonian can be split in two parts, pairing and quadrupole. The
quadrupole part lends itself naturally for a Hubbard-Stratonovich decomposition, while
the pairing part is more easily handled with a decomposition based on rank two operators
of the form 2.81. A comparison between all these types of decompositions would be
interesting. Because of the limited possibilities of our computer systems, we could not
make a comparison, at present, for general interactions. We had to restrict ourselves to
schematic interactions. the Hubbard model, the Pairing Hamiltonian, ... Details about
these calculations are given in the second part of this work. Concerning the different
decompositions, we can make afew remarks:

For the Hubbard model it is known that Hirch's discrete Hubbard-Stratonovich transform
of section 2.2.2 performs better than the continuous Hubbard-Stratonovich transform of
section 2.2.1[7]. Sinceitisan exact decomposition for thetwo-body interaction, itisclear
that it should outperform the discretized Hubbard-Stratonovich transform of section 2.2.1
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too. We did calculations for the Hubbard model with decompositions of the form 2.97
and 2.99. Because of their rank-one structure these decompositions lead to much faster
matrix multiplications than the Hirsch decomposition. They aso had less configurations
per inverse-temperature dice to sample over. However, the second-order decomposition
2.97 required 1000 or more inverse-temperature slices to reduce the systematic errors.
Therefore this decomposition performed much worse than the Hirsch-decomposition.
The fourth-order expansion 2.99 needs less dices to converge (V; of the order of 100), but
it leads to low acceptance ratesfor the Metropolis sampling algorithm (see section 3.4.1).
This can be explained by the fact that configurations that differ only in a few inverse-
temperature dices can yield completely different valuesfor the traces. The distribution of
terms in the decomposition was not smooth enough to be sampled efficiently by Markov-
chain Monte-Carlo methods. Away from half filling, the repulsive Hubbard model |eads
to sign problems. These were found to be more severe in the case of decomposition 2.99
than for the Hirsch decomposition. This shows that the sign-problem is closely related to
the form of the decomposition. So maybe the degrees of freedom, that we still have when
constructing decompositions, allow for adecomposition with less sign problems.

For the pairing decomposition we tried several decompositions of the type 2.99. They
all suffered from a very dow thermaization in the Markov-chain Monte-Carlo sam-
pling. Decompositions of type 2.81 performed very well. No comparison with Hubbard-
Stratonovich calculations was made. We expect them to be less performant, because they
require exponentiation and multiplication of dense matrices, and because they are based
on coarser approximationsto ez,

From this we are tempted to believe that decompositions of type 2.81 are the most
interesting ones for general interactions too: they are based on matrix operations of
rank one and two, that can be executed much faster than full-rank matrix operations. In
addition they arethe most exact in decomposing the operator e ~##: for ageneral two-body
interaction. Thisisa conjecture. Evidence hopefully followsin the near future.






M ar kov-chain Monte-Carlo methods

We will limit the discussion of Markov-chain Monte-Carlo methods (MCMC) to finite
systems (dimension is V). Because any numerical simulation is finite and discrete, this
is genera enough to cover the practical applications of MCMC, especialy for SDQMC.
This limitation will allow usto use results from linear algebrain order to demonstrate the
convergence of MCMC.

3.1 TheMonte-Carlotrick

Our am isto compute aratio of two sums

_ 2 fla)w(x)
a E:E’ ’UJ(.I'/)
where the number of states x is very large, too large to make a complete summation
feasible. Nothing is said about the sign of the w(x). We will assume that al w(z) are
positive. The case where a fraction of the w(z) is negative, will be discussed in the next
chapter in the framework of SDQMC methods, when the (in)famous 'sign problem’ is
discussed. By normalizing the w(x) to a probability distribution

E(f) (3.1

w(x) = % (3.2)
E(f) can beinterpreted as aweighted average:
E(f) = Zz: f(@)m (). (33)
Then 7 isaprobabilty distribution so that
m(z) > 0Va (3.4)

Y ow(z) = L (3.5)

xr
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We require a strict inequality in 3.4 in order to avoid problems with division by zero, but
theresults of thischapter can easily be extended to probability distributionsthat vanish for
certain states x. The'trick’ of Monte-Carlo methods exists in approximating the complete
sum in 3.3 with a sum over a limited sample 21", 212 .. 2] drawn according to the
probabilty distribution 7. The central limit theorem [13] assures that for large enough M
the sample average

Eo(f) = ~ 3" f(al) (36)
M = ’

tends to the total average E(f). Inthelimit of large M, Es(f) is normally distributed
around E( f) with a standard deviation

E(f?) - E(f)?
o= \/ —— (3.7)

The main problem of course, is to draw a sample z[', 2121, ... =M distributed according
tor.

3.1.1 Independent sampling techniques

In order for the central limit theoremto apply, al =" of the sample have to beindependent.
If we have amethod to draw randomly one z according to the probability distribution 7 (),
then we can generate a sample by repeating this method A times independently. For a
number of probability distributions one can easily generate samples.

The uniformdistribution

The simplest one isthe uniform distribution: al = are equally probable. If we number the
states = from 1 to NV, then all we have to do isto generate M random numbers between
1and N. A lot of 'random-number-generator’ routines have been developed. They
generate ' pseudo-random’ sequences of numbers: each number is obtained by applying
a definite transformation on the previous numbers, but the numbers look as if they are
completely uncorrelated. Most programming-language compilers have a built-in random-
number generator. Care has to be taken with these, because often they work well for
short sequences but are too ssimple to generate large uncorrelated samples that are needed
for Monte-Carlo smulations [12, 13]. For our calculations we used the random-number
generating fortran routine 'ranl’ described in [12].

The transfor mation method
Some probability distributions with a ssimple analytical form can be generated by trans-

forming a uniform distribution: Suppose we want to sample a distribution = (y ), with the
variable y areal number. Let the function IT be defined by

M(y) = /_ yoo r(t)dt. (38)
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If theinversefunction of II can becal culated, thenwecan transform avariable x uniformily
distributed between 0 and 1 into a variable y = T1~'(z) distributed according to = (y).
Thismethod is strongly limited by the fact that one needs to know IT~!. Often one knows
only the unnormalized weight w(z) instead of the normalized probability = (). In order
to sample according to w( ) one hasto know the normalization constant )", w(x), which
involves the computation of al terms, not just alimited sample. Often the state space is
too large to calculate w(x) for all states x, because thisis one of the main motivationsfor
the use of Monte-Carlo methods.

Von Neumann rejection

If one can draw a random variable from a distribution 7¢(z), then one can sample some
other distribution = () on the same set of states = with amethod known as’ Von Neumann
rejection’: Let ¢ be aconstant such that

m(x) < emo(x) V. (3.9
e step 1. Draw z according to mo(z).
e step 2: Draw y according to a uniform distribution between 0 and 1.

o step3: Ify > CJ;% then go back to step 1. Otherwise, z isthe result.

The final = will be distributed according to =(z). Note that the probability that = is

accepted in step 3 is equal to M (averaged over al ). Therefore Von Neumann
rejection will only be efficient if ¢ is not too big. Thisisonly possible if there exists a
"comparison function’ =, that can easily be sampled and that differs not too much from
7. The method can a so be used when only the unnormalized weight w(x) is known: just
replace (z) withw(z) in3.9andin step 3. Inthese casesit is often difficult to determine
the constant ¢ such that condion 3.9 is met.

The method is visualized in figure 3.1.

For Monte-Carlo simulations the rejection method is often unusable. In order to ensure
that 3.9 holds one might have to calculate all =(x). Or one hasto take ¢ large enough so
that one can be sure of 3.9 without checking it for all . Most often this leads to a very
high rejection rate, which makes the method useless.

3.2 Markov-Chain Monte-Carlo sampling

What to do with complicated, unnormalized probability distributions? Statistical methods
that permit to sample these distributionsdo exists : * Markov-chain Monte-Carlo methods
(MCMC). The sacrifice one hasto makeisthat the z’sin a sample are no longer indepen-
dent. It has been shown that the results obtained with these samples do converge to the
exact resultsif one takes the samples large enough.

Markov-Chain Monte-Carlo methods like the ’ Gibbs sampler’ or the’ Metropolis random
walk’ arewidely used nowadaysin all kindsof fields: statistical physics, statistics, econo-
metrics, biostatistics, ... Though their useis very widespread and their basic convergence
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Figure3.1: Illustration of Von Neumann rejection: Points are generated uniformely in the region
below cmq (). Pointsthat fall in the shaded region, below = (z), are accepted. The other ones are
rejected.

properties are known for many years[18], the issue of their convergence is adressed only
superficially in physics literature. E.g. in[13] it is shown that

|7t — 7] < ||#W = 7], (3.10)

which means that 7[/! comes closer to the target distribution = with every Markov step.
But this does not prove the convergence of =l to #:

|7l — 7| — 0 for large]. (3.11)

A lot arbitrariness also ill exists in the way error limits are determined. Sampling the
Markov chain every m steps, where m is determined so that the sampled values are nearly
independent, asis suggested in [6, 13], leads to suboptimal sampling and underestimated
error limits. Though the deviations are not dramatic, little computational effort is needed
to improve on them. In this chapter we introduce MCMC on a sound basis and discuss
convergence and error limits thoroughly.

3.2.1 Markov chains

A Markov chain is a sequence of states z[, 2", 212 21 . where every zll is drawn

satistically from a probability distribution P(zl~"1, z1) that depends only on zl—*! and

is independent of . This does not mean that =7 will be independent from zl-2, z[i=3],

... zl1 depends on 2"~ and =~ depends on z[*~?], therefore = will also depend on
. ep _ ep

zl"=21 but not as strongly as z[i~11,
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A Markov chainischaracterized by its’ transitionkernel” P. P(y1, y-) givestheprobability
that =1 = y, given that z(~'1 = y,. Because P(y:,y,) is a probability, the following
conditions hold:

> P(z,y) =1 Va, (3.12)

and
0< P(y,y2) <1 Yy1,v,. (3.13)

In order to say something about the statistical properties of the =), one needs to know
the probability distribution 7[°l(z) of the initial value z[°!. Let us denote the probability
digtribution of z[! with z[l(z). From the way the Markov chain is congtructed it follows
that

wll(r) = YOy Py, ),

F[Q](;U) = Z W[l](y)P(y, z),

W[i](fﬁ') = E’/r[i_l](y)P(y,x) Vi. (3.149)

Sationary distribution
A probability distribution x (x) for which

m(z)=>_x(y)P(y,z) Va, (3.15)

Y

is called a’ gtationary distribution’ for the Markov chain with transition kernel . From
3.15 and 3.14 it follows that if =[] is distributed according to =, then =+ 242 are
distributed according to = too. Under certain conditions on the transition kernel P that
will be discussed furtheron, a Markov chain will have a unique stationary distribution =
and the probabilty distribution 7 will converge to = for large enough 7. ’ Convergence
of the MCMC means that

|7 — 7| — 0 (3.16)

for large j and for some measure ||.||. Not only whether a Markov chain converges but
aso the rate at which ||zl — x| approaches 0 is an important issue. In practice, one
assumes that after a certain number of steps, say 7, the Markov chain has converged and
that zlil = 7zlo+1] = . = 7. One then says that the Markov chain has ’thermalized'.
Thefirst i, steps are called the"burnin’ or "thermalization’ steps.

Theideabehind MCMC isto construct atransition kernel P such that it hasa given’target
distribution’ 7 as its stationary distribution. A Markov chain is set up with this kernel.
After anumber of thermalization steps, the Markov chain is assumed to have converged.
From then on the Markov steps are used to generate a sample =1, 201, ... 2IM] The
Markov chain has thermalized so all [ are distributed according to . With these z[1 a
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sample averageis calculated for an observable f

LS 41
Es(f)=MZf(x ). (3.17)

We will demongtrate that Es( f) is statistically distributed around an average value E( f)
(the accuracy of MCMC) and that the standard deviation of Es(f) from E(f) tends to
0 for large enough M (the precision of MCMC). Because the z/l are not independent
expression 3.7 cannot be used here to estimate the precision and will have to be modified.

3.2.2 Matrix notation for P and =

In order to discuss the convergence and the precision of MCMC, it is useful to introduce
a matrix notation for P and =. This will allow the use of results from linear algebra.
The space of states z is finite and discrete, so we can number the states from 1 to N:
x1, T, ...2N. (the subscripts denote the position in the ordering of all the states x, not to
be confused with theindex of the positioninthe Markov chain, denoted with superscripts).
We definethe N x N matrix P by

PZ']' = P(IZ,”L'J> (318)

Thus P; istheprobability to gofromthe:*" to the ;! statein one Markov step. Probability
distributions will be denoted as V-dimensional column vectors «, with elements

7 = w(x;), (3.19)
or dso asdiagional N x N matrices IT with diagonal elements given by

Furthermore we introduce the column vector £ = (111...1)7.
We can immediately write down some properties:

NnE =, (3.21)
EF'MIE=E"r =1, (3.22)
PE=E. (3.23)
Property 3.14 becomesin matrix notation
(=) = (z6-0)" P. (3.24)
Repesting this: times, we find
(7)) = (1) P, (3.25)
The condition for 7 to be a stationary distribution becomes
T = 7zTP. (3.26)

Note that 3.23 and 3.26 both have a specific meaning in the language of linear algebra:
E is aright eigenvector of P with eigenvalue 1 and = is a left eigenvector of P with
eigenvalue 1.
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3.2.3 Reversble Markov chains

A Markov chainissaid to be 'reversible’ if aprobability distribution = exists such that the
following condition isfulfilled (reversibility condition):

m(z)P(x,y) = n(y)P(y,z) Vz,y, (3.27)

or in matrix notation
P = (IP)". (3.28)

In the language of linear agebra this means that I1P is a symmetric matrix. Condition
3.27 is sometimes referred to as 'detailed balance’. It is a sufficient condition for P to
have = as astationary distribution:

Lemma 3.1 If a probability distribution = fulfills the reversibility condition 3.27 with P,
then = isa stationary distribution for the Markov chain with transition kernel P.

Proof:

Summation over y and application of 3.12 to the left-hand side transforms
the reversibility condition 3.27 into condition 3.15.

End of proof.

Nearly all Markov-Chain Monte-Carlo methods that are used in practice are based on
reversible Markov chains.

For reversible Markov chainsthe convergence can be discussed in terms of the eigenval ues
of areal symmetric matrix. To see thiswe rewrite expression 3.25 as

AN — (Lo pi
(=) = (=)

- () ()
- (@) (v L)
= (0" %Pi\/ﬁ, (3.29)
0 P = \an\% = \}ﬁ(HP)\/lﬁ. (3.30)
V1 isthe diagonal matrix defined by
VI = +y/1Li = +/7. (3.31)

Because I1 P (reversibility condition 3.28) and /T arereal symmetric matrices, P isaredl
symmetric matrix too. From linear algebra we now that areal symmetric matrix always
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can be diagonalized through an orthogonal transformation and that all its eigenvalues are
real. Let N
P = 0TAO, (3.32)

with O an orthogonal matrix and A areal diagonal matrix withtheeigenvalues Ay, ..., Ay
of P asitsdiagonal elements. Then =il is given by

T I 1 T ;
(=) = (oﬁn[ 1) A (ovT). (3.33)

This shows that the evolution of zl"] with j, and hence the convergence of Ul to x, will
depend on the eigenvalues of P.

3.2.4 Eigenvaluesof P

In the previous subsection we introduced the symmetrized transition matrix 2. We have
shown that its eigenvalues are real and that they determine the convergence of the MCMC.
Herewewill show that P has one eigenvalue equal to 1, with a corresponding eigenvector
that is related to the target probability distribution =. We will aso show that al other
eigenvalues are smaller than 1 in absolute value.

First of all we note that eigenvalues of P are also eigenvalues of P and that their eigen-
vectors are related:

Lemma 3.2 If v is an eigenvector of P with eigenvalue ) then vy = ﬁv is aright

eigenvector of P with eigenvalue A and v;, = +/Ilgv is a left eigenvector of P with
eigenvalue \.

Proof:

v is an eigenvector of P with eigenvalue \

0
Pv = M
()
\/ﬁP%v = Av
()
P(o=v) = (=)
—=v) = (—=A)v
VT VI
and analogousdly: i
v ISan eigenvector of P with eigenvalue A
3
vl P Mot
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T 1 _ ‘UT
v \anﬁ = A
|}
(\/ﬁv)TP = )\(\/ﬁv)T.

End of proof.
Lemma 3.3 P hasan eigenvector v; = /ILE with eigenvalue \; = 1.

Proof:

Property 3.23 tells us that ' is aright eigenvector of P with eigenvalue 1.
From lemma3.2 it follows that v/TIE is an eigenvector of P with eigenvalue
1.

End of proof.

An upper bound for the eigenvalues of P and P can be found by taking the co-norm of P
[11]:

...,

[Plloo = max (ZIPZJI) (3:34)

Lemma34 || P = 1.
Proof:

Because all P;; are positive we have that

HPHoo— max (Z|PZ]|) = max (ZP,]) (3.35)

........

From 3.23 it follows that

|Plloe = max (1) =1. (3.36)

=1,...

End of proof.
Lemma 3.5 All eéigenvalues of P have an absolute value smaller than or equal to 1.

Proof:

If v isaright eigenvector of P with eigenvalue ), then

A = Po
U

(Allvil = [(Pv)i| Vi
U
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|A| |P]|s = 1. (3.37)

End of proof.

From lemma 3.2 it follows that all eigenvalues of P have an absolute value smaller than
or equal to 1 too.

In order to prove the convergence of MCMC we have to demonstrate that P has only
one eigenvalue equal to 1. Thiswill require an additional condition on P. Therefore we
introduce the notion ’irreducibility’: A Markov chain with transition kernel P is said to
beirreducibleif any state = can be reached from any initia state 2% in a finite number of
Markov steps. In mathematical notation:

Vi, j: 3k [Py > 0. (3.38)
Lemma 3.6 If P? isirreducible then P has only one eigenvalue equal to 1.

Proof:

From lemma 3.3 we know that P has an eigenvector v; = IIE with
eigenvalue \; = 1. Suppose P has asecond, independent eigenvector v, with
eigenvalue \, = 1. Because P isrea symmetric, v, has to be orthogonal to
vy viv; = 0. Furthermore we can take v, to be areal vector without loss
of generality. Now consider the 2-norm of v, and Puv,. With 3.30, 3.23 and

3.26 wefind that
[Posl; = Allvall3 (3.39)
I
N N 9 N N
Z(va)i = 13 (vy) (3.40)
=1 =1
U
N N
Z 2]02] kuQk = Zﬂ-zﬁgz (341)
7,k=1 =1
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N N
Z WiPij’ﬁngik‘lN)Qk = Z Wszszﬁgz (342)

2,5,k=1 2,5,k=1

N U _I_ ﬁzk‘
~ o~ 21 2
Y 7w Py Piptyitay = E 7 Py P, ——=.

7,7,k=1 7,7,k=1

(3.43)

Here v, standsforwm We now that

(3.44)

and that equality is only possible if « = 6. Therefore, the equality in 3.43
will only hold if v,, = v,, for al j, k for which there exists an : such that
WiPijPik 7é 0.

From this we can draw the following corollary: if one can go from state
71 to State 5, in two Markov steps, then o,;, and v,;, must be equal. Because
if one can go from state j, to state j, in two Markov steps then there must
be a state : such that P;,; # 0 and P,;, # 0. IIP is symmetric and =; # 0
and 7;, # 0. Therefore P;;, # 0. S0 3.43 can hold only if v5;, = ©5;, From
this it follows that if any state j; can be reached from any other state j, in
an even number of steps, then all v,; must be equal. But then v, ~ £ and
thusv, ~ VIIE = v; | Therefore P has a unique eigenvalue equal to one.
A completely analogous reasoning can be followed to show that P has no
eigenvalue equal to —1.

So we can conclude this by saying: if any state j; can be reached from
any other state j, in an even number of Markov steps, then P has a unique
eigenvalue \; = 1 andall itsother eigenvalueshavean absolutevalue|\;| < 1.
We can reformulate the condition as: if P2 isirreduciblethen P hasaunique
eigenvalue \; = 1 andall itsother eigenvalueshavean absolutevalue|\;| < 1.

End of proof.

We remark that if P(z,x) # 0 for some x, then irreducibility of P impliesirreducibility
of P%: Suppose that one can go from y; to ¥, in an odd number of steps, then one can
go fromy, to z, stay 1 step in x, go back the same way to y; and then go to y, in an odd
number of steps. In thisway one has gone from y, to i, in an even number of steps. If any
state y, can be reached from any other state y; in afinite number of stepsand P(z,z) # 0
for some x, then y, can allways be reached from y; in an even number of steps.

A fool’sMCMC sampler

Irreducibility of P isnot a sufficient condition for all but one |A;| to be smaller than 1, as
can be seen from the following counterexample: Consider asystem with n binary degrees
of freedom, e.g. anearest-neighbour Ising system with . spinsthat can point eather up or
down [16]. A state of the system is specified by avector o = {o4,...,0,}
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with o; = +1 or —1 depending on whether the :** spin is pointing up or down. Let
the weight w(o) be given by a Boltzman factor e~F</(*T) A thermal ensemble of such
systems can be sampled using MCMC. The probability distribution (o) is proportiona
to w(o). Suppose we have atransition kernel P that satisfies the reversibility condition
3.27 and that flipsm spinsin each Markov step. Define 3, asthe set of states that have an
odd number of spins pointing up and ¥, as the set of states that have an even number of
spins pointing up. If m iseven then P transforms ¥, into ¥; and ¥, into ¥,. Thismeans
that astate in X, can never be reached starting from a state in ¥, and vice versa. Thus P
isnot irreducible. If m isodd then P can beirreducible. P will transform ¥, into ¥, and
Y., into ;. Therefore P will have the structure

0 P
(00 e

Because of this structure P, for every right eigenvector

( Z; ) (3.46)

with eigenvalue \ there will be aright eigenvector

( _”;2 ) (3.47)

with eigenvalue -\. Because 1 isan eigenvalue of P, —1 isan eigenvalue to. Thus there
existsa|A;| = 1,¢ > 2, eventhough P isirreducible. Thereforethe Markov chain will not
convergeto thetarget distribution. Notethat P? isnot irreduciblesinceit again transforms
Y, into ¥; and X5 into X,.

3.25 Non-divergence and convergenceof MCMC

By using a spectral decomposition
. N
P =>"v\v], (3.48)
=1

we can rewrite 3.33 as

with
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and

v; = Vv, (3.51)

Because the v; are orthonormal vectors, the coefficients ¢; are bounded by

N N (W[.O]) ’
=31l L (3.52)
1=2 7=1 T

The v; are no probability distributions because they can have negative elements. They are
bounded by

[oilla < 1, Vi. (3.53)

If 77 = 7 then the coefficients ¢; = v v; are equal to zero for al i > 2 because of the
orthogonality of the eigenvectors of P. In that case =/ will be equal to = for al j. So
3.27 isasufficient condition for ' non divergence’ of the Markov chain.

In practice we have 71! % r, so some of the ¢; will be > 0. The Markov chain will
converge only if the corresponding |A;| < 1. As demonstrated in the previous section,
thisis guaranteed if P? isirreducible. We see from 3.49 that =l will converge to = and
furthermorethat this convergence is geometric.

We can conclude:

e condition 1. If P isreversible then the Markov chain is non-divergent.

e condition 2: If, in addition, P? is irreducible then the Markov chain converges
geometricly.

These are sufficient conditions. Also if reversibility isnot fulfilled, the Markov chain can
still converge. A Markov chain for which = is a stationary distribution, will converge to
7 if P isirreducible and not periodic [15]. P issaid to be periodic if some states can be
reached only in a number of Markov steps that is an multiple of some integer value, the
periodicity. In the example of the fool’s MCMC sampler for the Ising model given in the
previous section, P was periodic with periodicity 2 for odd m.

Thisdiscussion waslimited to finite, discrete Markov chains. MCMC techniques can also
be applied to countable infinite or continuous state spaces. The previous results remain
valid: if P isreversible and P? isirreducible, then P has a unique eigenvalue equal
to 1. But this does not guarantee geometric convergence of the Markov chain: P will
have inifinitely many eigenvalues. It is possible that there are eigenvalues infinitesmally
close to 1 that prevent the Markov chain from converging. It can also happen that the
initial distribution is such that the sum of the coefficients ¢; in 3.52 diverges. This can
also prevent the Markov chain from converging. Establishing conditions that guarantee
convergence (or even geometric convergence) for MCMC in infite state spaces is a goal
of ongoing research in statistics [15].

3.2.6 Understanding the convergenceof MCMC

In order to construct efficient transition kernelsfor MCMC, it isimportant to have a clear
picture in mind how the convergence evolves.
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Lets start with an initial distribution 7. A good measure for the deviation of [ from
the target distribution = is given by the sum s[%! of the squares of all the ¢; in 3.49. It was

already mentioned that
N N (71_2[0])2
sl = =y ~—+—1. (3.54)
k=2 =1 Up
We can extend thisto every j by defining s/l as
. N Wz[j] ?
s =3%" ( ) —1. (3.55)
=1 i
These sV’ can be interpreted as the variance of
. [7]
=i (3.56)
i
around its average, weighted according to =
. Nl N
/) = S m =S Al =1, (3.57)
=1 Uy =1
N [ _lil 2
E((7-1)) = (7” - 1) i (358)
=1 i
N [11\2 ,
=y (M — 27l 4 m) (3.59)
=1 UE
()
> —241 =35l (3.60)

If sl = 0 then £ = 1 for all 7 and thus = = =, for all i. Hence sli! is a good measure
for the convergence of the Markov chain.

How does f evolve under aMCMC step? From the reversibility condition 3.27 it follows
that

it

fz'[j+1] — % - (361)
P
N _[j]
Pr;
-y (3.62)
k=1 U
N _[j]
T PZ
= 3.63
; - (3.63)
N .
= Z Pikf,i. (3.64)
k=1

Thismeansthat fz-[j] isreplaced by itsaverage over all states & that can bereached from state
7, weighted according to the probability distribution P;;. Thisloca averaging resultsin a



3.2 Markov-Chain Monte-Carlo sampling 47

smoothing of £/l with every MCMC step. If P connectsthewhol e state space well enough
(irreducibility of P2), then fUl will finally have aflat distribution, i.e. ¥ ~ E(fll) =1
for all 7. At that point /) has converged to .

From this it can be expected that a transition kernel that connects more states (with a
non-negligible probability) will lead to a more efficient smoothing of /! and hence to a
faster convergence.

We can quantify this convergence by looking at the evolution of sl

N .
il = 3 (fi[]+1] _ 1>2 . (3.65)

=1
N

=S () (3660
=1
N . .

— E fz‘[]-l-l]Pikf]E]]ﬂi -1 (367)
i,k=1
| 1) 2 +1]) 2 [ _ ol 2

Y nl [(f,EJ]) () (g g )]m_1 (3.68)
i,k=1

7,k=1 7,k=1
- Z WiPik (f;EJ] —_ fz-[]-l—l]) —_ 1 (369)
1,k=1
& ) 2 AN
= 3 _;mpki(fk) —1|+5 gw(f ) -1
N . o
_ Z 7Py (fIEJ] _ fi[]-l— ]) (3.70)
1,k=1
Lo L gen |+ 0 el 2
= s+ osU - 37 mPy (A = ) (3.72)
1,k=1

If we define A asakind of local variance of f/! around its average weighted according
to Py,

. N . 9
AP =37 Py (£ = 1) (372)
k=1
then it follows from 3.71 that
st = sl og(AlY), (3.73)

In other words, the amount by which sU! decreasesin one MCMC step is given by 2 times

the average local variance of fl/ around its local average (weighted according to P;;)
fli+],
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Figure3.2: H (zll) asa function of the number Markov steps j for three different initial distribu-
tions, averaged over 5000 independent Markov chains.

3.2.7 Monitoring the convergenceof MCMC

Except for some special cases, we do not have any prior information on the eigenvalues
of the transition kernel P. A practical problem in MCMC is to determine a minimal
thermalization length n, such that one can safely assume that the Markov chain has
converged.

A safe way to determine such a thermalization length would be to run a large number
of independent Markov chains and to monitor how the value of an observable f(zl),
averaged over all the Markov chains, varies with j. Figure 3.2 illustrates this for a
SDQMC calculationinthe 4 x 4 Hubbard model. Three different initial distributionswere
used. With each initial distribution 5000 independent Markov chains were run. The
monitored observable was H(z) = — In(w(x)). This observable can be interpreted as a
kind of 'free energy’ of the configurations. We used this observable because it can be
evaluated with no cost from the weight w( ) and because we observed that it thermalized
dower than other observables like e.g. the energy. For this observable, one can also
determine alower bound for the first autocorrelation coefficient (see section 3.4.4). After
150 steps the Markov chains seem to have thermalized. In order to rely on these Markov
chainsfor the calculation of other observablestoo, it would be safeto consider at least 300
thermalization steps. Itissuggested by Lang et al. [37] to start the Markov chainin astate
2[% for which w(z[) is high. Such an initial state should lead to a faster thermalization
than an initial state that is drawn randomly from the whole configuration space. If we
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look at the total strength 3.52 of the coefficients ¢;,

0 _ N~ 2 [F[O](x)] 2 1 (3.74)
S = Cc. = —_—Y — .

we see that the ¢; can be very large if states for which = (z) is small have a considerable
initial probability 71°!(z). Choosing z[! from aregion where w (™) is high, eliminates
the contributionto s from stateswith asmall = (). However, our results shownin figure
3.2, do not support this idea: The three initia distributions required an approximately
equal number of thermalization steps.
Running 5000 independent Markov chains is useful for illustrating the convergence be-
haviour of MCMC. In practice, we cannot afford to run 5000 independent Markov chains
in order to assure convergence. What one wants ideally is a way to tell, after a number
of stepsin asingle Markov chain, whether the Markov chain has converged or not, based
upon the results obtained so far with that Markov chain. Because only after the thermal -
ization steps, computational effort and memory have to be devoted to the evaluation of
observables and the accumulation of statistics. Several methods have been suggested to
diagnose convergence during a single Markov chain. A review isgivenin [28]. Most of
these methods are complicated to implement and apply only to specific MCMC methods.
For our calculations we monitored convergence in a pragmatic way: Typically some 50
independent Markov chains were used, in order to obtain accurate error limits on the
results (see section 3.3.3). A thermalization length n, was choosen on the safe side.
Shorter lengths might have been sufficient, but it was easier to take the thermalization
a little bit too long and to check wether it was long enough, than to take a shorter
thermalization length and to redo the calculations if the thermalization length was found
to betoo short. We monitored the convergence by looking at the valuesfor the observable

H(z) = —In(w(z)). The value of H(zl') was stored for j = 22,2t 20 These

H(zU1) wereaveraged over the 50independent Markov chains. With at-test these averages
were compared to the average value of H(x) for the total of all Markov chains. In this
way the convergence of the Markov chains after n, steps was tested for the observable
H(z). If occasionally no was too short, the calculation was repeated with a larger no.
But most often we could deduce a safe n, before starting the cal culation by looking at the
thermalization of previous calculations with dightly different inputs.

3.3 Sampleaveragesand their precision

3.3.1 Averages, variancesand autocorrelations

After the Markov chain has converged, we can use the next M steps of the chain to
generate a sample =1, 212 . 2IM] With this sample we can estimate the expectation
value E( f) of an observable f:

1 M .
7 > f(2l). (3.75)

J=1

Es(f) =
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Es(f) isan unbiased estimate for E(f). This can be seen by averaging Es(f) over al
converged Markov chains =1, 22, ... Ml Because the chain has converged, =l will
be distributed according to =. We have that

(Es(f))(all MCMC samples)

M
= Y 7 (o) P(al, o). . P, 2 M) ST (ol

LY/

.....

_ MZ S () P(al, 2 - P21, M) (o)

.....

= E(f). (3.76)

In going from 3.76 to 3.76 we used 3.12 and 3.14. The precision of this estimate can be
quantified by evaluating the variance of Es( f) around its mean value E( f):

Var [Es(f )](all MCMC samples)
- <( ( ) ( )) >(all MCMC samples)

= <( Es(f )) )(all MCMC samples)

.....

zll,.. z[M]
L%f(x[f])eri % T2 F(0)
12 71=1 AI2 1<j=1
— L%ZW("U[JD Falihy?
M? 7=1 zlil
.- [\ 7 =i ] L F
i pi-t [{] ..l
,W RIpY (1) F(atPi= (1, 21) f (2l
| M , 9 M-1 o -
= E B+ 15 3 (M = k) X w(a) [ (@) P (e, y) ()
j=1 k=1 T,y
_ 2 1+2MZ_1(1—1¢/M) (f)] (3.77)
M Pt PRI - '

f= f-EJf (3.78)
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oA(f) = E[(f-E()]] =
o) = Y w(2)f(x)PH(z,y)

Y

E(?) (3.79)
Fw)/a*(f). (3.80)

pr(f) iscaled the k™" autocorrelation coefficient of f. If we introduce the vector

f=Vif, (3.81)

we can rewrite o?(f) and pi(f) as
) =17 (3.82)
pulf) = f?f;f . (3:89)

From the fact that E( f) = 0 it followsthat f is orthogonal to v; = V/IIE and that pi( f)
is bounded by the second largest eigenvalue of P:

lox(F)] < Aal”. (3.84)

Equality will occur for f = v,. Because |\, < 1, pk(f) goes to 0 as k goes to infinity.
pr(f) isameasure for the correlation between f(z[) and f(zl+H).

The central limit theorem

Expression 3.84 shows that this correlation decreases exponentially with increasing ..
After some number of Markov steps, the f(x) can be considered as almost independent
samples. Hence, if M gets very big, one can expect the sample average E5( f) to behave
almost as an average of independently sampled values. For large M, the central limit
theorem tells us that the average of independently sampled values tends to be normally
distributed with amean E(f) and avariance o*(f)/M. For aMCMC sample the centra
limit theorem still holds under quite generall conditions [15] (that are fulfilled for finite
reversible Markov chains) but the distribution now has a variance given by

owc(f) = ,‘(f [1 +2 Z pi( ] (3.85)
From 3.84 it followsthat o3, (f) isbounded by
2( 0 2(
2 g (f) ‘ k g (f) 1+
< = . .
omell) = = (1 + 2; /\2) M 1-X (386)

This showsthat A, isnot only determinative for the convergence rate of MCMC, but also
for the precision of the sample averages. A matrix notation for o3, (f) isgiven by

o*(f) s L+ P

ool = 7 f o >f/ (/77) (387)

= 2. (3.89)
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It isinteresting to compare the independent and the MCMC variances. In order to obtain
the same precision with MCMC as with independent sampling, one needs r( f) timesthe
number of samples needed with independent sampling, wherer( f) is given by

1+ P

(p — vy

If P has eigenvalues close to 1, r(f) can be quite large. On the other hand, if P has
negative eigenvalues, then it can happen that »( f) is smaller than 1. In that case, MCMC
sampling will be more precise than independent sampling [19] ! This has the paradoxial
consequence that a kernel with eigenvalues closeto —1 will converge very slowly but can
yield very precise results after thermalization. So the fool’s sampler from section 3.2.4
was maybe not that foolish after all! If an other transition kernel is used first in order to
make 7/l converge to =, then the fool’s sampler might be superior in evaluating sample
averages.

r(f) = 1" )f/ (7). (3.89)

Estimating autocorrelations

The autocorrel ation coefficients p, ( f) areintrinsic propertiesof the Markov chain, closely
related to the eigenvalues of P. Since they determine the error limits on the sample
averages and al so the optimal sampling interval lentgh (see below), it isimportant to have
areasonable estimate for them. Thisis obtained by evaluating the correlation between the

sampled values:
1 M-k

Y ; fifirk — E5(f). (3.90)

Ce(f) =
The expectation value of C( f) isgiven by

(Cr(f))(all MCMC samples) = pr(f)o*(f) — Var [Es(f)](au MCMC samples) (3.91)

= o -5 39)

If M islarge enough the second term can be neglected. Then we get

_ G

— Co(f)
where Cy( f) isthe variance among the sampled values. Note that this requires py(f) >
") o that the estimate is bad for small p, (large k) or small M (small samples). Even
if M isvery large, the estimates for the small p;. are unreliable. We observed that the
variance of the C';, is dmost independent of k. Therefore the relative error increases for
larger k& or smaller p,.. It often requires much more samples to obtain reliable estimates
for the ), than to obtain reliable estimates for Es( f). Therefore methods to obtain error
limits on Eg( f) that are based on autocorrelation coefficients are often either unreliable

(too big errors in the C}) or inefficient (too many samples are needed in order to get
reliable valuesfor the ).

pr(f)

(3.93)
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First-order-autocorrelated series

We say that the series f(z[1), f(z[¥),. .. isa’first-order-autocorrelated’ seriesif

pe(f) = [ ()", VE. (3.94)

Thisis the case if p(f) depends only on one non-zero eigenvalue of P. In other cases,
the assumption of a first-order-autocorrelated series can be a good approximation. For
such aseries, r(f) given by

0= -

3.3.2 Sampling with intervals

Until now we assumed that f(z) was evaluated for every zll. If the evaluation of f(z)
requires a considerable amount of computing time, it might be more efficient to evaluate
f(z) only after every n'* Markov step. Thisamountsto replacing P by P™. It reducesthe
samplesize M by afactor n. Atthesametimeit canreducethefactor r( f) considerably. In
thisway o3, () increases only dightly, while the computation timeis strongly reduced.
This can enhance the efficiency of the method.

It is often suggested to take the interval such that the first autocorrelation coefficient
between sampled valuesis about 0.1 [13, 6]. This value is not motivated by efficiency.
It should ensure that the sampled values are almost independent, such that the rules
of statistics for independent samples can be applied to fix the error limits for the sample
average. However, thisinterval length leadsto suboptimal sampling: most of thegenerated
configurations are not used for the evaluation of the sample average. Furthermore, the
samplesthat are used are considered asindependent, whilethey still havean autocorrel ation
of 10%. Therefore the obtained error limits might be mideading.

What interval leads to the most efficient sampling? To set the idea, we assume that the
f(2l) form afirst-order-autocorrelated series. Let v be the ratio between the computing
time need for theevaluation of f(z) in onepoint = and the computing time needed for one
Markov step. Let M, the number of Markov steps, be large. The thermalization steps are
neglected. Let p be the autocorrelation coefficient of f for two successive Markov-chain
states. Then the first autocorrelation coefficient of f in the case of sampling with n-step
intervalsis given by

A(f) = o (3.96)

To determinethe optimal sampling interval, welook at the computation timethat is needed
to get error limits smaller than a given value o,. Suppose a Markov chain of M steps
is used to generate sample values every n'" step. Then Es..(f) is the average of M /n
sample values. The error on Eg . (f) isrelated to its variance:

()
M/n "

(f). (3.97)

‘7}2\/10,71(]() ~
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Expression 3.89 is adapted to the fact that the Markov chain is sampled every n'" step:

)f/ (F7F). (3.98)

To reach the desired level of precision, oy n(f) = o4, we need a number of sample
values given by
M  o?
M_ U, (. (3.99
n O'g

The needed amount of computer timeis given by

a*(f)

g

M M
T=M+—y=—(n+7)=—zr(f)n+7) (3.100)
g
where the time unit is equal to the time needed for one Markov step. The efficiency ¢ is
inversely proportional to 7

eox — (3.101)

(n+7)ra(f)

For afirst-order-autocorrel ated series this becomes

1

S (3.102)
(n+7) 2%

€ X

The optimal interval length nis the one that maximizes¢. Here, ¢ depends furthermore on

two parameters. v and p. Instead of the variable n we take » = p” as the independent

variable for the optimization of . This has the advantage that there isa scaling in e:
1—2

© na) + n(p)7)(1 £ 2)° (3103

such that the optimal = depends only on one parameter z = In(p)y. The values of the
parameters depend strongly on the system that is studied. Typical values are v ~ 1,
p ~ 0.95. Thisleadsto = ~ —0.05. Figure 3.3 shows the efficiency as a function of «
for several values of z. The efficiency is optimal around the suggested value of = = 0.1
only if z < —2. Thisisthe case if the Markov chain has a very short autocorrelation
length or if the values for the observable require a lot of computing time. Such a low
value for z is seldomly encountered in practice. Hence one can expect that the optimal
value for = will be greater than 0.1. We made the assumption that the series of values
was a first-order-autocorrelated series. In reality the autocorrelation coefficient and the
efficiency are related to a weighted average over the eigenvalues of P:

AN AN 4 AR
 a+d+ ok

, (3.104)

with the coefficients ¢, ¢,, . . . ey given by

¢ =v] f. (3.105)
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. . . B e _— ) .
Figure 3.3: The efficiency ¢ = )T ()7) (T52) for a first-order-autocorrelated series as a

function of the first autocorrelation coefficient «, for several values of the parameter = defined in
the text.

With these coefficients, r,,( ) can be expressed as

pltdy | 2ldAs Ly 2 1RAY
2127 31-27 N1-7,

nlJ) = . . .106

The efficiency is now given by

2 2 2
ct+ez+---+c

€= 2A 3 - N —T (3.107)
21427 21427 2 4+Ay

(n+'y) 021—/\21%'63142I "'ch—A;(,

The averaging over all A’swill shift the optimal = to lower values. An estimate for the
optimal = can be obtained by fitting the autocorrel ation coefficients p; with an expression
of theform

pi all{ + azlé 4+t amlfn,with a1+ ay+ - +a, =1, (3.108)

where m, the number of terms, is quite small so that a reasonable fit can be obtained.
Then we can subgtitute the ¢; and ); in 3.107 with the «; and /; and determine the n that
maximizes . This procedureisillustrated in the following example.

Example for the optimal sampling interval

Theinternal energy of the half-filled 4 x 4 Hubbard model was calculated witha SDQMC
method. The interaction strength was /' = 8|t|, the inverse temperature 3 = 2/|¢|,
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a; [ i
0.053888 | 0.99898
0.744906 | 0.98757
3 | 0.201206 | 0.95933

N | .

Table 3.1; The coefficientsfor thefit of the autocorrel ation coefficients with a function of the form
3.108.

Figure 3.4: Autocorrelation coefficientsfor a SDQMC cal culation of the energy for the half-filled
4 x 4 Hubbard model with U = 8|t|,8 = 2/|t|,N; = 80.

the number of inverse temperature dices N; = 80. The energy was evaluated after
every Markov step. The first 1000 autocorrelation coefficients for this observable were
calculated. They were fitted with afunction of the form 3.108 with 3 terms. The addition
of afourth term did not improvethefit, so only threetermswereretained. The coefficients
a; and [; arelisted in table 3.1 The autocorrelations and the fitted function are shown in
figure 3.4. With the algorithm we used, the evaluation of the energy required 1.4 times
the amount of computer time needed for 1 Markov step. Using the fitted coefficients a;
and /;, an estimate for r,,( F') was obtained

N L T O
T ey T

ra(E) = a; (3.109)

This estimate was used to calculate the efficiency ¢(n) as afunction of the length . of the
interval with which the energy should be sampled.

1

(n+ 1.4)r.(E) (3.110)

e(n) =
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Figure 3.5: Efficiency ¢, (F') versusthe first autocorrelation coefficient p[l”“] (E) for the SDQMC
calculation described in the text, with a varied sampling-interval length n.

Infigure 3.5theefficiency ¢(n) isplotted asafunction of thefirst autocorrel ation coefficient

P N(E)
oM = a1t + ayl? + asl?, (3.112)

that would be obtained if the energy was evaluated only every n Markov steps. The
optimal efficiency is obtained at p[l”“] ~ (0.55. This corresponds to an interval length of
some 40 Markov steps. |If theinterval length would be chosen such that p[ln] ~ (.1, which
corresponds to n ~ 200, the efficiency would be only 75% of its maximal value. Figure
3.6 shows the efficiency for several values of ~. It isobserved that the efficiency remains
within 5% of its maximal value at p!™ ~ 0.5 for a broad range of values for 4. Only for
extreme values of v ~ 200, the maximum in the efficiency curve is found at p[ln] ~ 0.1.
Around pi" ~ 0.5 the effiency is observed to vary very smoothly. From this we conclude
that in most cases, choosing the sampling-interval length »n such that p[l”“] ~ (.5, isagood
choice. Only in extreme cases, it will lead to alower efficiency than the often suggested
value pi” ~ 0.1.

Guidelinesfor choosing the sampling interval

We want to make two more remarks on interval sampling. In most cases, the optimal
interval length » can be expected to be quite large such that the optimal » >> ~. In those
cases the efficiency is not very sensitiveto . If the evaluation of f requires 2 times more
computation time than 1 Markov step, then arun where f is evauated every 20 steps will

requireafraction ;342 = 0.92 of thetime that isrequired for evaluating every 10 steps.




58 Markov-chain Monte-Carlo methods

Figure3.6: Efficiency ¢, (E) versusthefirst autocorrelation coefficient p[ln] (E) for several values

of the parameter ~.

Evaluating every 10 steps will be at least as precise as evauating every 20 steps, so the
efficieny will differ not more than 9% and probably less. Thereforeit is safer to take the
interval length not too long, if + is still much smaller.

A second remark is connected to the better-than-independent-sampling paradox mentioned
at theend of section 3.3.1. Supposethat f isevauated every n Markov steps. Thisamounts
to Markov-chain sampling with akernel P™ instead of P. If n iseven, P™ will have only
positive eigenvalues, while P(*~) can have negative ones. Therefore it can happen that
an interval of n Markov steps leads to alower precision than an interval of n — 1 Markov
steps, although the former scheme leadsto less correlated samples. Thissuggeststhat itis
preferableto take an odd number of Markov steps in between sampled values. In practice,
the negative eigenvalues of P tend to be small so that the effect will be small too.

To conclude we can say that, generally speaking, taking the interval length » such that
the first autocorrelation coefficient is smaller than 0.1 leads to too long intervals and a
suboptimal efficiency. A rule of thumb that will do better in most cases, isto take n» such
that the first autocorrelation coefficient is approximately 0.5. We also recommend to take
n odd (if itisof no avall, it is no drawback either).

3.3.3 Error limitson sample aver ages

From the MCMC sample '], ..., 2™ we can calculate the sample average Es(f) of a
function f. This can be considered asa’ measurement’ of an’observable’ f (e.g. energy,
dengities, . ..). Because MCMC isadtatistical technique, itisimportant to determineerror
limits for the measured values. Otherwise the obtained results are meaningless. Several
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approaches can be followed, the one more reliable or efficient than the other.

Pseudo-independent samples

A method for establishing error limitsthat is often suggested in literature [13, 6] is based
on sampling with intervals (see section 3.3.2): evaluate f(z) every n Monte-Carlo steps
and take n large enough such that the samples can be considered as independent ones.
Error limits can then be obtained from standard statistical rules. If we label the sampled
vauesas fi, fa, ... fm, m = M/n, then the outcome of the ’measurement’ is the sample
average

Es(f) = %f}f (3.112)

The variance on Es( f) isgiven by

o2(f) = Es [(f = Es(M)’] /(m = 1), (3.113)

A 95%-confidence interval for the average is given by the appropriate 45y, coefficient
(m — 1 degrees of freedom) times the standard deviation o s.
The arbitrary point in this method is how to decide when samples are independent. Itis
suggested to take n such that p,, < 0.1. Aswe showed before, thisoften leads to intervals
that are longer than optimal. Furthermore, we do not know the coefficients p,,. We have
to use the estimates C,, / Cy. These estimates can become unreliablefor values as small as
0.1.
The obtained samples are not completely independent: thereis still a correlation of 10%,
so it ismore accurate to call them ' pseudo-independent’. If the series of sample-valuesis
first-order autocorrelated, this correlation of p = 10% leads to an increase with a factor
r(f) = /1% ~ 1.11 in the standard deviation of Es( f). So the suggested error limits
are 10% too small. In genera the series are not first-order autocorrelated, so that the
underestimation will be lessthan 10%. The factor 1.11 isamaximum value. We suggest
to multiply the pseudo-independent error limits with thisfactor, since it guarantees an’ at
least 95%’ -confidence level.

Estimation of »( f)

In most casesit is advantageousto sample with shorter intervals. Here the sampled values
can no longer be considered as independent. The independent-sample variance has to be
multiplied with the factor »( f) to obtain the true sample variance (see expression 3.88).
Estimating error limits amountsto estimating »( f).

Because pi. ~ () /Cy, one could naively be tempted to estimate r( f) by

r(f) ~1+ zgjl (1 - %) g’;g; (3.114)

However, this estimate turns out to be exactly 0. The reason for this is the second term
in expression 3.92. This term makes that C'./Cy is not a good estimate of p; for larger
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k. Because that second term is proportional to ( f), we can account for it by modifying

3.114 into ) N e
=142y (1 _ E) ( o) (‘?) . (3.115)

If the summation over k is carried out, one obtains thetrival result

r(f) ~0+r(f). (3.116)

Again, this does not lead us to a good estimate for r( f). A way to obtain an estimate for
r( f) isto neglect the contibutions of the p,. for & bigger than acertain number K. Because
the p;, decrease exponentialy with increasing k&, this seems plausible. One can bring the
fraction of »(f) on the right hand side of equation 3.115 to the other side, and divide out
the prefactor of r( f). Thisleadsto [18]

2

DG ) ag) e

The number K may not be too small, because in that case a substantial fraction of the p;
would be neglected and r( f) would be underestimated. Taking K too large makesthefirst
factor in theright hand side of 3.117 large and the second factor small, such that the errors
on the second factor are multiplied drastically and spoil the estimate. For applicationsin
SDQMC, we found this estimate to be impractical because it suffered too much from the
high uncertaintiesonthe ), for larger k. Sample sizesthat allowed accurate determination
of sample averages did not allow accurate estimation of the errors on these averages with
this estimate of r( f).

A different approach to estimate r( f) is to estimate the dominant eigenvalues of P aswas
explained in section 3.3.2. An estimate for r( f) isthen given by expression 3.106. Again,
for practical use this estimate is unreliable: the estimates for the eigenvalues of P are
spoiled by the uncertaintiesin the ;. Furthermore the determination of the eigenvalues
fromthe C';, can be quite complicated, becauseit amountsto an inverse Laplace transform.
In the case of afirst-order-autocorrelated series, r( f) can be estimated as

r(f) (3.118)
Because the C; are most often well determined, this estimate is useful, as far as the
approximation of a first-order-autocorrelated series is applicable.

Repeated runs

A simpleway to obtainreliableerror limitson the sample averages, isto restart the Markov
chain anumber of times (say N) with independent starting values. The obtained sample
averages will be approximately normally distributed, because of the central limit theorem.
Furthermore, they are indepedent because they are the results of independent runs. The
total average of the N sample averagesistaken asthefinal result. The error on thisvalue
can be obtained from standard statistics, since it is an average of N independent values.
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Instead of one Markov chain of M steps, oneruns N Markov chainsof M /N steps. The
accuracy of the final value will remain the same (it remains an average over M values).
The estimated error limits will be more reliable. Restarting the Markov chain a number
of times aso avoids therisk that the Markov chain gets stalled in alimited region of the
configuration space. Furthermoreit alowsareliable monitoring of the convergence of the
Markov chain. For most of our calculations we determined error limitsin this way, with
N = 50.

The disadvantage of this procedure is that one has to thermalize the Markov chain NV
times. If thermalizationisquick, thisisno big problem. But if the thermalization requires
alot of Markov steps, this procedure becomes inefficient. An aternative in this case is
not to restart the Markov chain every M /N steps while still calculating an average every
M/N steps. One then obtains NV values that can be expected to be normally distributed.
But now these values are not independent. If AM/N is large enough, the correlations
among these values will be small, so that the series of values can be considered as a
first-order-autocorrelated series. |f one determines the first autocorrelation coefficient
(', of these values, then accurate error limits can be obtained by multiplying the error
limits for independent case with the factor \/Er(f), with (f) given by 3.118. Still itis
recommendabl e to restart the Markov chain afew times, in order to avoid therisk that the
Markov chain gets stalled in alimited region of the configuration space.

Error limits on ratios of observables.

In SDQMC we often have to calculate ratios of observables. Determining error limits
on ratios of averages is more complicated than determining error limits on the averages
themselves. Especidly if the sasmpled values are autocorrelated, asisthe casein MCMC.
Suppose that we need to evaluate aratio f/g,

>, f(z)w(z)
> ga)w(e)’

A situation often encountered in SDQMC, isthat ¢(x) isthesign, w(z) the absolute value
of Tr (Uz) and f(z) an observable (e.g. theenergy E,) timesg(z). Theratio f /¢ isequal
to

flg = (3.119)

flg= % (3.120)

One could determine Es( f) and Es(g) from a sample obtained in aindependent MCMC
run. Note that the obtained values are not independent. Then we take as an estimate for

flg

Es(f/9) = (3.121)

If Es(f) and Es(g) would be independent, the varianceon Es( f/¢) could be estimated as

2 _ BN [ | ()
o*(f/g) = E2(,) [Eg(f) + Eg(f)] : (3.122)
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Figure 3.7: Scatter plot of Es( f) versusEg(g) obtained from 400 SDQMC runs of 8000 Markov
stepseach. Thesystemstudied herewasthe4 x 4 Hubbardmodel, withU' = 4|¢|, 3 = 8, N; = 160,
6 spinsup and 6 spins down.

f g | f/g (energy)
value || 0.0988 | 1.749 17.70
standard deviation || 0.0040 | 0.074 0.20

Table 3.2: Standard deviationson Es(f), Es(g) andEs(f/g).

In figure 3.7 we show the scatter plot of Es( f) versus Es(g) obtained from 400 SDQMC
runs. Here, ¢ isthe sign and f the energy times ¢ of the terms in the expansion of
Tr (e—f’ﬁ) . Itisclear form this figure that variances on Es( f) are strongly correlated to
variances on Egs(g), in such a manner that they are divided out to a large extent in the
ratio f/¢. The standard deviationson Es(f), Es(¢) and Es(f/g) arelisted in table 3.2.
If f and ¢ would be independent, the resulting standard deviation on f /¢ would be of the
order of 1.0 instead of 0.2. If Es(f) and Es(¢) would be calculated from independently
sampled states z17), then the correl ations between f and ¢ could be taken into account with
the estimate for the variance given by [18]

Es [(f — Es(f/9)9)’] |

=10 (3.123)

o*(f/g) =

Thisexpression can be applied to Monte-Carlo dataif one assumes (pseudo-) independent
samples, as in section 3.3.3. Or in the case of repeated runs, as in section 3.3.3, if one
applies the expression only to the averaged values of every run.
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We remark that if repeated runs are used, then one should estimate f /g as

Es,(f) +Es,(f) + -+ Esy(f)
ES1(g) + E52(9> +o 4t ESN(g)7

(3.124)

and not as

ESl (f) ESz (f) ESN(f)
+ +--+ , 3.125
Esi(0) T Es (o) Esx 9) (3.129)
because the former estimate is less biased than the | atter.

3.3.4 Variancereduction

In this section we explain a method to reduce the variance on the Monte-Carlo sample
averages. For generality, we introduce the formulas for a ratio of observables f/g. By
putting ¢ = 1 one obtains the formulas for a single observable f. This discussion is a
generalization of ideas presented in [18] and [12].
Instead of evaluating E(f/¢) by drawing asample S = (z['l, 2121, ... 2IM]) according to
w(x) and evaluating
Ej]\/il f(x[j])

one could draw a sample S’ = (y!!l,y[@, ... yM)) according to an aternative weight
distribution v(y) and evaluate

Eolg) = YL FyPw(yt) )

M g(ylhw(yld)

Thisisagood estimate of E( f/¢) too, because

(3.127)

~ |~

E(f/g) =

E.(fw/v)
— _ 3.128
E (gu/0) (3129
Sampling according to a different distribution will lead to a different variance on the
obtained sample average. In the case of independent sampling we can calculate the

variance on the ratio 3.127 using expression 3.123:

E, [(fw/v —E.(f/9)gw/v)?]
El(gw/v)
E..(v/w)E, [(f = Eu(f/9)9)* w/o]

_ 10 . (3.129)

oX(flg) =~
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What form for v(z) results in the smallest variance? Minimizing expression 3.129 by
varying v(x) leadsto

v(2)? o [f(w) — E(f/g)9(x)]* w(x). (3.130)

To be useful for Monte-Carlo sampling, () has to be positive. Apart from a normaliza-
tion, we obtain

v(z) = |f(z) — E(f/g9)g(z)| w(z). (3.131)

The corresponding variance on f /g is given by

El (|f(z) —E(f/g)g(x)])
E(9) '

Sampling according to an aternativedistribution v(z) can reducethe error on the obtained
sample averages. The error will be at least as large as 3.132. Practically, one does not
know theratio E( f/¢) in advance. One can makeaguessforit, R ~ E(f/g), and sample
according to | f(z) — Rg(z)|w(z).

For Markov-chain Monte-Carlo methods, variance reduction is not aways an improve-
ment: the error of the results depends not only on o ( f/¢), but also on the autocorrel ations
in the sample, expressed by the factor »(f) in expression 3.88. Sampling according
to the weight | f(z) — Rg(z)|w(z) instead of w(z) can enhance these autocorrelations
because of two reasons. First of al, the weight |f(z) — Rg(z)|w(z) has nodes where
f(z) ~ Rg(z). For these configurations z, the weight becomes small. It is not very
probable that the Markov chain will pass through a region with small weight. It can
be expected that, compared to sampling according to w(z), the chain will stay for a
longer period in the region where f(z) < Rg(x), before passing on to the region where
f(z) > Rg(x). Hence, autocorrelationswill belarger. A second reason, that playsarole
in case of Metropolis-sampling (see section 3.4.1), is that the autocorrelations are rel ated
to the deviation between the target distribution w(z) and the stationary distribiution of the
proposition Kernel. The extrafactor | f(xz) — Rg(x)| in front of the target distribution can
enhance these deviations.

We tried to apply variance reduction to SDQMC calculations for the energy of the 4 x 4
repulsive Hubbard model. We observed a reduction in the errors of the sample averages,
but longer Markov-chain runs where needed because of the larger autocorrelations. Fur-
thermore, the eval uation of the energy with every Markov-chain made that aMarkov chain
took twice as much time as in the case without variance reduction. Therefore, variance
reduction was no improvement for these calculations. We think that variance reduction
could improve the efficiency of Markov-chain Monte-Carlo methods in cases where the
evaluation of v(x) does not require much more time than the evaluation of w(z),

oy (fg) ~ (3.132)

3.4 Construction of transition kernels

Given atarget distribution 7, we want to construct a transition kernel P such that P is
reversible (condition 3.27) with = and such that P? isirreducible. Before we go into detail
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on some particular kernel types, we want to mention two ways in which we can combine
reversible kernels into new ones. These kernels are called hybrid kernels. They can be
useful in order to construct irreducible kernelsfrom reversible but reducible kernels.
Thefirst way isto choose randomly between several kernels. Thisamountsto aweigthed
average of kernels:

Lemma 3.7 If P, and P, aretrangition kernelsreversible with =, then P = (P; + P,)/2
is atransition kernel reversible with = too.

Proof:

P isatransition kernel since a its elementsfall between 0 and 1 and

_R+EE_RE+EE_E+E
2 N 2 2

PE

~ . (3.133)

Furthermore P satisfies the reversibility condition 3.28 since

Pi+ P, 1P+ 11,

mp = M——= >
P+ P /P + P TH
- 2 _< 2 )
= pPTI.

End of proof.

This lemma can be extended to any linear combination of transtion kernels,
P = Oélpl —}—a2P2+...oznPn, (3134)

with0 < ay,ag,...,a, < landa; +as + ...+ a, = 1.
We can also apply two different kernels consecutively. This does not necesserally lead to
areversiblekerndl.

Lemma 3.8 If P, and P, are transition kernels reversible with =, then P = P, P, isa
transition kernel too. It has = as its stationary distribution, but it will only be reversible
ifP1P2 == P2P1.

Proof:

P isatrangtion kernel since al its elements fall between 0 and 1: P;; can be
seen astheweighted average of the elementsof the 5 column of P,, weighted
according to the elements of the :** row of P,. Since al the elements of P,
fall between 0 and 1, P;; doestoo. Furthermoreit is clear that

PE=PPRLE=PFE=F. (3.1395)
P hasr asit stationary distribution because of condition 3.26:

sP=7nPP,=7P,=r. (3.136)
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From
[P =1PP, = P'TIP,= PTPITI = (P,P,)" TI (3.137)
we see that the reversibility condition 3.28 will only be fulfilled if
PP, = P, P,. (3.138)
End of proof.

Some MCMC methods are based on transition kernels of this type. An exampleis the
"deterministic scan Gibbs sampler’ (cfr. section 3.4.2). A simple way to make a product
trangition kernel reversible, is by repeating it in reversed order: instead of applying two
timesP = P/P,---P,onecanuse P = P P,---P,P,--- P,P,. For anon-reversible
kernel P = P, P, that is a product of reversible kernels, the convergence of the Markov
chain can still be understood as alocal smoothing of fll = 7l /7 as discussed in section
3.2.6, with the minor modification that the smoothing proceeds according to P, P; instead
of P = P, P,. For adiscussion of the convergence properties of hybrid kernelsin terms
of the convergence of the constituent kernels, see [23, 24].

In the next section we will discuss a method to construct reversible kernels which have a
given target distribution as their stationary distribution. To obtain irreducible kernels, one
sometimes has to combine several reversible kernels. Thisisapractical problem that will
depend on the details of the system under study. We will discussthisfor SDQMC in more
detail later on.

34.1 TheMetropolis-Hastings method

The most important method for building reversible kernelswas introduced by Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller [17] for computing thermodynamical properties
of molecules. It was extended to a genera sampling method by Hastings [18]. Most
methods for building reversible kernels used nowadays, like e.g. the Gibbs sampler, can
be understood as specia cases of this method.

The method works as follows: suppose that the Markov chain isin a state /1. For the
next Markov step atria state =7 is proposed by making a small, random change to the
configuration of 7). This has to be done in such away that the probability of generating
2T from 271, denoted with Q (=, 2T'), hasto be equal to the probability of generating z 1!
fromzT, Q(2l), 2T) = Q(2T, zl"l). For thelsing system of section 3.2.4, e.g., suchan =T
could be generated by flipping afew randomly chosen spins on the lattice. Here 2+ is
chosen in the following way:

o If 'w(xT) > w(:g[j])’ then take zU+1 = 2T,

o If w(z") < w(zl), thentake zl+'1 = 27 with probability w(zT) /w(zl1),
otherwise take zl+1 = Ui,

This defines a transition kernel P(zl], zli+11) for the Markov chain. It is easy to verify
that P fulfillsthe reversibility condition 3.27:

'w(;c[j])P(x[j], x[j+1]) — 'w(x[j+1])P(:0[j+1], x[j]). (3.139)
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It is important to notice that the method is based on the ratio w(z™)/w(zl). Hence the
normalization of w(z) does not have to be known. This method defines a random walk
through the configuration space, where trial moves are accepted or rejected according to
theratio w(zT) /w(zl).

The method can be generalized to asymmetric proposition kernels () [13]. Generate the
trial move z” from Q(zll, z7). Let ¢ be given by

w(xT)Q(a?, 1)

w(zQ (2, 2T) (3.140)

q:

o If ¢ > 1, thentake zlit1 = 27,
o If ¢ < 1, thentake 2+ = 2T with probability ¢, otherwise take zl/*+1 = 2l

If () isareversible kernel whose stationary distribution wq () is known (not necessarely
normalized), then ¢ can be calculated as

'w(xT)wQ(J:[j])

" w(eluwg(eT) o

This can be interesting if =7 is generated in a complicated way such that it is difficult
to determine Q(z7, zl'l) explicitly. An example of such a situation is given in section
3.4.5. Other rulesfor accepting or rejecting =7 can work too. Hastings [18] mentions the
following rule, a generalization of a method proposed by Barker:

o Takezlit! = 2T with probability 72, otherwise take zl/+1 = 2,

The method can be formulated in a general way by writing the transition kernel P(z, y)
as the product of the proposition kernel Q) (=, y) with an acceptance function A(z, y),

P(z,y) = Q(z,y) Az, y). (3.142)

The acceptance function must fulfill 0 < A(z,y) < 1,3, Q(z,y)A(z,y) = 1,Vz and the
reversibility condition

w(@)Q(z,y)A(z,y) = w(y)Q(y, ) Ay, 2). (3.143)

This acceptance function shiftsthe stationary distribution of the Markov chainfromwg ()
to the target distribution w(z). Possible formsfor A(z,y) are

e generalized Metropolis:

v.y) = min M) .t
Alz,2) =1 = Y Qa,y)(1 — Az,y)). Va. (3.145)
y#T
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a S og E| og || E/S|ogs
0.544 || 0.329 | 0.062 || 584 | 1.12 || 17.72 | 0.15
0.382 || 0.305 | 0.045 || 5.37 | 0.82 || 17.63 | 0.11
0.297 || 0.325 | 0.037 || 5.75 | 0.67 || 17.69 | 0.14
0.242 || 0.317 | 0.032 || 5.59 | 0.57 || 17.65 | 0.13
0.203 || 0.314 | 0.038 | 5.55 | 0.68 || 17.66 | 0.16

O~ wN RS

Table 3.3: Comparison of the efficiency of several proposition kernels. = is the number of spins
updated per Markov step, a the acceptance rate.

e generaized Barker:

o 5 ”

A = S0+ wle@) T (3:149)

Alz,2)=1-=> Q(z,y)(1 — A(z,y)), Va. (3.147)
y£z

The second lines, 3.145 and 3.147, haveto assurethat )~ P(x,y) = 1. Peskun has shown
that the Metroplis rules give the opimum choice for A [19].

The optimum choice for the proposition kernel () depends strongly on the system under
consideration. In most applications, = is constructed by making small moves from
2l If = denotes a spin configuration (as in the 1sing mode!), =7 can be generated by
flipping some spins. If = denotes areal vector, =T can be generated by adding to one of
its components a small step that is uniformely sampled from an interval [— 7, L]. If the
moves are small, then the Markov chain will stay in the same region of the configuration
gpace for along while. Thisleads to large autocorrelations and hence to a low efficiency.
If the moves are big, then a lot of trial moves will be rejected. A lot of time is spend
on the evaluation of unused configurations, which also makes the method inefficient. A
balance has to be found between low autocorrelation and high acceptance. A measure
that is often used to quantify thisis the acceptance rate a. It isthe ratio of the number of
accepted trial moves to the number of Markov steps in a run of the Markov chain. Itis
often suggested to make the trial moves of such asize that « ~ 0.5. Thisvalueis quite
arbitrary. It isauseful rule of thumb, but it does not guarantee a near to optimal efficiency
for the MCMC. Gelman, Roberts and Gilks showed that for a class of systems with high
dimensional state spaces the optimal acceptance rateis a ~ 0.23 [21]. For our SDQMC
calculations, we observed that the efficiency of the Markov chain did not vary very much
for acceptance rates between 0.25 and 0.5. Table 3.3 shows results from a calculation for
the repulsive Hubbard model ona4 x 4 lattice, with 6 + 6 electrons, U = 4|t|, 3 = 6/|t|.
The average sign .S and an energy observable £ (suchthat £/.S givestheinterna energy),
were calculated for several proposition-kernel parameter settings which each lead to a
different acceptance rate a. 20 runs of 50000 (correlated) samples were done. From this
an average and a standard error for the observables were calculated. Table 3.3 shows that
the optimal acceptance rate for £ and .S is24%, remarkably close to the value of Gelman
et a. The standard error of £/.S on the other hand, does not seem to be very sensitive to
a.
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3.4.2 TheGibbssampler

A special case of the Metropolis-Hastings method is the Gibbs sampler [22]. It can be
used when the configurations are vectors « = (x1, 22, . .. z,,), and when the conditional
probabilities = (z;|x1, 2, ... zj—1, 241, - .., x,) @eknown (i.e. can be sampled directly)
but the total propability density = () is not. Transition kernels Py, ... P, are defined as
follows:

For P;(xz,y): generate y from x by teking y; = z; for « # j. Draw y; according to
m(@j|er, oy X1, Ty T)-

Each of these P; isreversiblewith =(z). The P; can be considered as Metropolis kernels
with the proposition probability given by the conditional probability of the ; * component
of . Because v (z|y)7(y) = #(y|z)n(z), theratio ¢ in 3.140 equals 1 and thetrial moves
are aways accepted. The P? are not irreducible. In order to obtain a transition kernel
P whose sguare is irreducble, one has to combine the P; using lemma 3.7 or lemma 3.8.
Thisleadsto the’ random-scan Gibbs sampler’ and the’ determini stic-scan Gibbs sampler’
respectively. One can expect the random-scan sampler to lead to shorter autocorrelation
lengths, because its transition kernel connects more states at once than the kernel of the
deterministic-scan sampler. Thiswill lead to a more efficient smoothing of the function
fUl defined in 3.56. As explained in section 3.2.6, this means that the Markov chain
convergences faster.

If the conditional probabilities «(z;|x1, 2, ... %1, 2j31,...,2,) ae not known explic-
itly, Monte-Carlo techniques can be used to evaluate them. Because the configuration
spaces for one variable « ;, with the other variables fixed, is much smaller than the total
configuration space, the sampling of one variable can often be done in an efficient way.
This leads to hybrid algorithms like the * Metropolisin Gibbs sampler, where the z; are
sequentially sampled using the Metropolis agorithm.

In statistical physics the Gibbs sampler is known as the “heat bath” algorithm [13]. A
canonical ensemblefor n classical particlesis sampled according to the Boltzmann factor
e~ PH(@z2.m0) — This is done by bringing one particle into equilibrium with a “heat
bath” at inverse temperature 3, while keeping the other particles fixed. Bringing = ; into
equilibriumwith a®heat bath” at inversetemperature 5 amountsto sampling = ; according
to m(x;|e1, 2oy .o 2 1, i1, Ty) X e PHELTZT—1:T541,070) - Solving the one-body
problem for every variable z; sequentially in a heat bath with al the other variables fixed
brings the total many-body system in thermal equilibrium with the heat bath. The heat-
bath algorithm is often applied to spin systems. These can be seen as systems where the
components z; of the state vector = can take on only two values: up or down. At every
Markov step, one spin z; isflipped with aprobability 1, where g istheratio between the
weight of the configuration with z; flipped to the weight of the given configuration. This
probability ﬁ is also the probability with which arandomly generated trial move for z
has to be accepted according to Barkersrule (see section 3.4.1). Asdiscussed before, the
Metropolis acceptance rule is more efficient. Therefore, the heat-bath agoritm for spin
systems can easily beimproved by flipping the spin = ; with probability min(1, ¢). Liuhas
shown how the heat-bath algorithm or Gibbs sampler can be improved in an analogous
way for systems whit components z ; that can take on more than two values [29].
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3.4.3 Theindependence Metropolissampler

An interesting type of Metropolis agorithm is the independence Metropolis sampler.
It is often used as a building block for hybrid kernels. An interesting point is that
the eigenvalues of its transition kernel can be computed explicitely. From these, the
convergence properties for the kernel can be determined. The independence sampler is
a Metropolis sampler whose proposition kernel is independent of =, Q(z,y) = Q(y).
This means that whatever the state = is, the trial move = is drawn independently
from a distribution Q(z7). Note that Q(y) is aso the stationary distribution for such a
proposition kernel. The acceptance of the trial move does depend on z1: =7 is accepted

with probability
. 7@)Q(M)
min (1, ’R‘(I[j])Q(SET)) . (3.148)

Thisleads to atransition kernel P whose second largest eigenvalue is given by [25]

1
max, (7(z)/Q(z))

This shows that the convergence behaviour of the Independence Metropolis sampler is
closely related to the deviation between the target distribution and the stationary distribu-
tion of the proposition kernel. Also the transition probabilities P”(x, y) can be computed
exactly for this case [26].

A =1— (3.149)

3.4.4 A limitation on Metropolisalgorithms

Except for the independence Metropolis sampler of the previous section, it is difficult
to predict the convergence behaviour of Metropolis kernels. An interesting result was
obtained by Caracciolo et al. [27]. They showed that alower limit for the second largest
eigenvalue ), of thetransition kernel can be derived in terms of an energy-like observable
H defined by

H(z) =In(wg(z)/w(z)). (3.150)
The first autocorrelation coefficient for this observable is bounded by

4/e?
var(H)’

pi(H) > 1 - (3.151)

withvar(H) = E[(H — E(H))?]. Because A\, > p;(f) forany [, we have alower bound
for As:

4 2
1 - e

21— o (3.152)

This again illustrates that the convergence of the Markov chain is closely related to the
deviation between the target distribution and the stationary distribution of the proposition
kerndl.
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Thisinsight allows usto give an intuitive answer to the following question: Suppose that
we have to sample configurations of the from 2.18:

4+ Tr <e+\/@fi) + Tr <e_\/@fi)

6
We could generate atrial move by choosing between these three terms with equal proba-

bility. The ratiosbetween w(z) and wq(z) arethen given by 2Tr(1), Tr <e+\/@fi) /2 and

(3.153)

Tr (e‘\/@fi> /2 respectively. Another possibility isto choose the first term with proba-
bility 4/6, the second and the third term each with probability 1/6. The ratios between
w(z) and we(z) are then given by Tr(1), Tr <e+\/‘%‘i) and Tr (e‘\/‘ﬁ‘i> respectively.
The question is. what way of proposing atrial move is the most efficient ? If 5 issmall,
then the ratios between w(x) and wq (x) for the latter method will al be closeto 1, while
for the former method they have alarger variation. Therefore it can be expected that the
latter way of choosing the trial move will lead to a more efficient sampling agorithm.
In general we recommend to construct the proposition kernel ) such that its stationary

distribution is as similar to the target distribution as possible, while still allowing a quick
generation of trial moves.

345 Guided Metropolissampling

Suppose that we want to sample from a distribution w(z) that requires a considerable
amount of computation time for the evalutation of w(z), and that we also have a function
wo(z) ~ w(z) that ismuch easier to evaluate. An efficient way to generate trial moves
for the Metropolis sampling of w(z), isto run aMetropolis Markov chain for wq(z) of a
certain number of steps, say », and to use the resulting state y astrial move. If Q(z,y)is
the Metropolistransition kernel for wq (), then the proposition kernel for thisalgorithmis
givenby Q"(z,y). Calculating Q"(z, y) and Q™(y, =) explicitly is practically impossible.
We cannot evaluate theratio ¢ from section 3.4.1 using expression 3.140. But Q"(z,y) is
aMetropolistransition kernel for wq(z). Henceit has wy(x) asits stationary distribution.
So we can evaluate ¢ using expression 3.141:
'w(;cT)wO(J:[j])

—w(el)we(2T)’
If wo(z) ~ w(z),Yz , then ¢ ~ 1. This means that most of the trial moves will be
accepted. Sousing wq(z) to’guide’ the proposal movesfor the Metropolissampling w(z)
resultsin a high acceptance rate. If wq(z) ismuch easier to sample than w(z ), thisguided
Metropolis sampling will be much more efficient than the Metropolis sampling based on
w(x) only. Inthelimit of large n, the MetropolisMarkov chainfor wq(y) will thermalize.
Thetrial moves y can then be considered to be independent from z. They are distributed
according to wo(y) The guided sampler becomes an independence Metropolis sampler.
InSDQMC, wherethew(x) aregiven by thetrace of aproduct of exponentialsof one-body
operators,

(3.154)

w(z) = Tr (e’a(“)e’a(”) e eA(th)) ; (3.155)
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a function wq(z) that is sometimes useful for guided sampling is obtained by retaining
only the diagonal elements of the A(:c). The product of the exponentials of the diagonal
matrices is again a diagonal matrix. Its trace can be evaluated with O (( N3) operations.
We applied thismethod in SDQMC calculationsfor the4 x 4 Hubbard model. The guided
sampling improved the efficiency of the SDQMC drastically for low inverse temperatures,
B3 ~ 1, and high interaction strengths, /' ~ 8. At higher values of 3 the method improved

the efficiency only dightly.



The Slater-deter minant quantum
Monte-Carlo method

The concepts introduced in the previous chapters are brought together in this chapter to
form a powerful quantum Monte-Carlo method for the study of fermionic many-body
problems.

In chapter 1 we showed that exponentials of one-body operators can be represented by
Ns x Ng matrices, with Ns the dimension of the one-body space. 1n chapter 2 we showed
how the exponential of a general two-body Hamiltonian H can be decomposed as a sum
of exponentials of one-body operators,

—BH

— Z e—gﬁoe—AAol (ﬁ)e—ﬁﬁoe—/icz (ﬁ)e—ﬁﬁo L. e—ﬁﬁoe—AaNt (8 —gﬁo

€

€

I o 4.1

In chapter 3 we showed how a sum over a large number of terms can be approximated
by statistical sampling using Markov-chain Monte-Carlo methods. In the present chapter
we will show how these building blocks can be combined into a method for the study of
fermionic many-body systems. The cornerstone of the method is the Boltzmann operator
e PH It can beused intwoways: it can be seen asthe many-body density-matrix operator
of a statistical ensemble of quantum many-body systems at a temperature 7' = 1/43, or
it can be seen as an operator that projects states onto the ground state of the many-body
system, if 3 islarge. Hencethe Boltzmann operator can be used to study thethermodynam-
ical (internal energy, specific hedt, . . . ) and ground-state (ground-state energy, density and
momentum distributions, correlations, . ..) properties of quantum many-body systems.
Spectroscopic information such as energies and level densities of excited states can be
obtained from thermodynamica data using an inverse Laplace transform. The inverse
Laplace transform is an ill-conditioned numerical problem. This makes the calculation
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of spectroscopic quantities using SDQMC a lot more complicated than the calculation
of thermodynamica or ground-state properties. Therefore, we restricted this work to
calculations of thermodynamical and ground-state properties. |mplementing aroutine for
theinverse Laplace transformin order to be ableto cal culate spectroscopic quantities, will
be one of the first goals of our future research.

4.1 Statistical guantummechanicsand thermodynamics

In statistical mechanics, one studiesthe propertiesof an’ ensemble’ of states. Anensemble
can be defined as a set of possible states of the system. To each state in the enemble a
weight is attributed that is proportional to the probability for the system to be observed
in that particular state. Severa types of ensembles are used in statistical mechanics. the
grand canonical, the canonical and the microcanonical ensemble.

The grand canonical ensemble represents asystem that isin equilibrium with an infinitely
large heat and particlereservoir at atemperature 7" and achemical potential ;. The system
can exchange energy with the reservoir. This leads to fluctuations in the energy of the
system. The system can also exchange particles with the reservoir, leading to fluctuations
in the number of particles. Statistical mechanics learns us that, at thermal equilibrium at
atemperature T' and a chemical potential y, the probability for the system to be in a state
with energy £ and a number of particles equal to N, is proportional to e %% Here, k
isthe Boltzmann constant. 1nwhat follows, we choose temperature unitssuch that £ = 1.
Instead of the temperature 7', we mostly use thevariable 5 = 1/7'. With these notations,
the weight attributed to a state with energy £ and NV particles in the grand canonical
ensemble is given by e=#F+AuN,

One could isolate the system from the reservoir in such away that particles can no longer
be exchanged, while energy exchangeisstill possible. Then the system has afixed number
of particles, N, while the energy of the system fluctuates. The ensemble that represents
such asystem isthe canonical ensemble. The probability to find the system in astate with
energy F isproportional to the Bolzmann factor e =#F.

One can further isolate the system, in such way that no energy is exchanged anymore.
Because the energy is a constant of motion for an isolated system, the system will have
afixed energy. The ensemble that represents such a system is called the microcanonical
ensemble.

In statistical quantummechanics an ensemble of states can be represented by a statistical
density matrix p,

p= wilg:)(dil, (4.2)

7

with w; the weight attributed to the many-body state ¢,. This density matrix represents
a mixture of states, not to be confused with a superposition of states. In order to see w;
as a probability for the system to be found in state ¢;, p should be normalized such that
Tr(p) = 1. For the canonical ensemble, the unnormalized statistical density matrix is
given by the Boltzmann operator e=##. This can be seen by expanding the operator e =%
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in the basis of V-particle energy eigenstates:

e 0 = 3" e OB B\ (Ey. (4.3)

Theprobability to find thesysteminastate with energy E; isproportional to the Boltzmann
factor e =%, The normalized density matrix is given by

1 N
ph=—e PH 4.4
with Z; defined as
Zﬁ = -er (e“ﬁH) . (45)

In what follows, we will use the notation Try for the trace over the N-particle states and
Tr for the trace over the complete many-body space; thus

Tr=3 Try. (4.6)
N=1
Zg 1s called the "partition function’. It contains all thermodynamic information on the
system in the canonical ensemble. For the grand canonical ensemble, aterm Gu N, with N
the particle number operator, has to beincluded in the exponent of the Boltzmann operator
The operator now acts on the whole many-body space without restrictions on the number
of particles:
1
ZGos

with the grand partition function Z¢¢ 3 now given by

e~ BHH+uN (4.7)

pGcc =

Zaog = Tr (G_ﬁﬁ-l_mdv) . (4.8)

With the SDQMC method, we can calculate the thermodynamic expectation values of
operators. The following expressions, apply to the canonical ensemble. The extension
to the grand canonical ensemble is straightforward. In the canonical ensemble, the
thermodynamic expectation value for an operator Ais given by

(A = Ziﬁer (A=), (49)

One can interpret (A) ¢ as the ensemble average of the matrix element (F;| A|E;).
Particularly interesting quantities to study with SDQMC, are thermodynamical quantities
such astheinternal energy, the specific heat, the entropy and the free energy of the system.
The internal energy U is the ensemble average of the energy, or in other words, the
thermodynamical expectation value of the Hamiltonian:

U = <H>O = i-ﬂ']\] (H6_5H> =

_6111|Z5|
Z3 ( '

ap

/

(4.10)
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The specific heat ' gives the amount by which the internal energy increases if the
temperature of the system isincreased by a small amount:

: : AV
U U _ @0 \Z| _ e 1y, — (g2 (4.11)

C:a—T:_/ a—l[))_/ (6/3)2 /

The entropy S of the system is given by

S = —Trx[In(p)p]

= —Ziﬁ-lﬁr]\f [(—ﬂff - hl(Zﬁ)) G_ﬁﬁ]

A

= [B(H)c + In(Zp)
= BU +1n(Zp). (4.12)

From the thermodynamical relation for thefreeenergy /' = U — T'S, one finds that

F = _M. (4.13)
s
The partition function is also related to the level density ¢(F~) of excited states of the
N-particle system: 7 isthe Laplace transform of g( E):

Zp =Y e PP =3 Pg(E). (4.14)
7 E

In an anal ogous way, the thermodynamic expectation value <A>g of an operator Ajn the
canonical ensemble can be seen as the Laplace transform of its expectation value (A) g in
the microcanonical ensemble:

(Ao = = S UBJAE)e ™" = —= 3 (A)pg(E)e™". (4.15)

This shows that, in principle, information obtained from the canonical ensemble can be
transformed to informationin the microcanonical ensemble. However, thistransformation
is equivalent to an inverse Laplace transform, which is known to be numerically very
unstable. Though in recent years maximum-entropy techniques have proven to be very
useful to stabilize the inverse Laplace transform, for this application the method remains
inaccurate and unstable.
The thermodynamic response function R ; () for an operator A in the canonical ensemble
is defined as [6]

R;(r)= <67HAT6_THA> = Ziﬁ-fr [6_(ﬁ_T)HAT€_THA] . (4.16)
Inserting a complete set of N-particle energy eigenstates ( |V,), | ;) with energies F;,
Ey) shows that

(0| A, e 7 BB, (4.17)

1« s
Ry(r) = Z—ﬁZe -
iof
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The thermodynamic response function R ;(7) can be seen as the Laplace transform of the
strength function S 4 (w):

R;(r) = Ze_WSA(w) (4.18)

w

1 , . 2
Sﬁ(w) = Z—QZG_ﬁ]i <\Ilf|A|\I/Z> 5(w—Ef —I-EZ) (419)
i, f

Here, S ;(w) gives the strength with which the action of the operator A can excite the
system at atemperature 7' = 1/ with an excitation energy w. In the limit of large 3,
S ;(w) gives the strength function for excitation out of the ground state. The inverse
Laplace transform needed to obtain S ;(w) from R ;(7) is not as troublesome as the
inversion of the Laplace transform in expression 4.15. Maximum-entropy methods yield
useful results here [6, 32]. It has been asserted that maximum-entropy methods form the
only consistent way to take into account the statistical errors on the Monte-Carlo datain
an inverse Laplace transform. [33].

4.2 SDQMC for the grand canonical ensemble

The thermodynamical expectation valuefor an operator A inthegrand canonical ensemble
can be expressed as a sum of terms that can be handled easily in a numerical way using
the decomposition 4.1. If we write this decomposition as

Tr [e_ﬁﬁeﬁ“N] =Tr [Z [A]Jeﬁ“N] =Y w(o). (4.20)

then the expectation value of the operator A can be written as
Tr [Ae_ﬁﬁeﬁ“ﬁ]

Tr [e—ﬁﬁeﬁﬂN]
5, Tr [AT7, 7]
ZJ/ -fr [UJIGB'U‘N]

Lo falo)u(o) (4.21)
Yot W
with
w(o) = Tr [Uaeﬁ“ﬁ] (4.22)
falo) = Tr[AUe™N] fu(o). (4.23)

These quantities can be evaluated exactly for any given configuration o. However, there
are too many configurations o to sum them all up. Expression 4.21 has aform that can be
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evaluated using the Markov-chain Monte-Carlo methods from chapter 3. How to proceed
if part of theweights w(co) are negative, is explained in section 4.5.

The Monte-Carlo technique that is obtained by evaluating expression 4.21 using Markov-
chain Monte-Carl o techniques, isoften called the’ Grand-Canonical Monte-Carlo Method’
or the’ Determinant Monte-Carlo method’ [7]. The method has been used extensively for
the study of condensed matter systems such asthe Hubbard model. For the decomposition
of the Boltzmann operator, use is made of the Hubbard-Stratonovich transform from
section 2.2.1 or Hirsch’s discrete Hubbard-Stratonovich transform from section 2.2.2.
Because of the 'auxiliary fields o arising in the Hubbard-Stratonovich transform 2.26,
the method is sometimes also denoted as ' auxiliary field Monte-Carlo’, though this name
is aso used for other Monte-Carlo techniques that rely on the Hubbard-Stratonovich
transform.

4.2.1 Evaluation of weights and observablesin the grand canonical
ensemble.

Insection 1.2.4 it was shown that the grand canonical trace of an operator [/ that transforms
Slater determinants into Slater determinants, is given by

Tr [Ueﬁ“N] = det (1 + eﬁ“U) , (4.24)

whereU isthe Ns x Ns matrix representation of the operator [7. Theoperator [/, = ¢5+(9
in the decomposition 4.1 for the Boltmann operator is such an operator. Its matrix

representation isgiven by U, = ¢[5(?)]. This leads to amatrix expression for w(o):

w(o) = det <1 + eﬁ“e[gg(ﬁ)]>
= det (14x0s), (4.25)

with y = ¢”#. Thisdeterminant can easily be evaluated using standard linear algebratech-
niques. The well known ' LU’ -decomposition method requires about 2N 2 floating point
operations (flops) [11]. For ill conditioned matrices, the singular value decompositionis
more suited. It requires about £ N2 flops for the calculation of the determinant [11].

In order to calculate the grand canonical expectation value of an operator A, we not only
need to calculate the trace of U, but also of AU,. In generd this last operator has a
different nature from the former one, because A U, is not a product of exponentials of
one-body operators. The expression 4.24 cannot be used. If A is a one-body operator,
we can get around this problem. We define the operator 4 (€) as the operator which
transforms a Slater determinant W ,,, represented by the Ns x Ng matrix M, into the
Slater determinant ¥, represented by

M' = (1+¢€A) M, (4.26)
where A = [A] isthe matrix representation of A in the one-particle space. Note that

d » o

e=0
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because the operator () 4 (€) isequal to the operator eA up to the first order in e. From
this we obtain the expression

Tr (A0,e™) = S [Q(e)07,]

e=0

d
= —det[l + x(1+€A)U,]

- (4.28)

e=0

The derivativein e can be evaluated by taking a small but finite value for ¢. Thisleadsto
det [1 + x (1 +€A)U,] — det [1 + xU,]

Tr (A0,) ~ : (4.29)

with € a small constant, small enough to make the systematic error on 4.29 negligible
compared to the statistical error originating from the Monte-Carlo procedure. A compact
notation for f4(c)is

Falo) =Tr [AT,| juw(o) = %m Tr[Q4(e) U] (4.30)

e=0
Another way to calculate Tr (AT, ¢V) is obtained by manipulating the determinant in
expression 4.28 such that one gets

NPT d
Tr (AU,e™") = T det[1+x (1 +eA) U]
€

e=0

d o
= det (1 + xU,) adet (1 + cAl -I\fl{(U )

e=0

XUU
= det (1 -) Tr| A . 431
et (1 +xUs) f( 1+an) (4.31)

The notation Tr is used for the matrix trace, in contrast to the notation Tr that is used for
the many-body trace. Because det (1 + zU,) = w(o), it followsfrom 4.23 and 4.31 that

Falo)=Tr (A XU ) (4.32)

A particular type of one-body operator iSA = d}dk. |tsexpectation value givesan element
of the one-body density matrix p':

pr; = (alar)ce. (4.33)

From expression 4.32 we obtain that for this operator

xUs

1 )
o) = (o)

xXUs
= 4.34
(1 +XU<7)kj (439
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Note that here a;, denotes the row vector which has a1 on the k%" entry and zerosin all
other entries. Using the notation defined in expression 3.1, we can write that p! is the
expectation value of the matrix R}

P =E(R), (4.35)
with the matrix R’ given by
xUs
R! = T iR (4.36)

Expectation values for a two-body operator B can be obtained by decomposing the two-
body operator as a sum of products of one-body operators:

B=Y AjAq. (4.37)

The grand canonical trace for a product of two one-body operators B = A, A,, can be
evaluated as

Tr[Ac Al e = L L F1[0; ()04, () Upe ]

d61 d62

(4.38)

€1 =0, EQ:O )

Again, the derivatives can be evaluated by taking small but finite values for ¢; and e,.
Alternatively, one can elaborate the formulafurther by manipulating the determinants:

Tr (A Ayl o)
d

d A
= ——det [1 + x (1 + €1 A1) (1 + €245) Ugeﬁ“N]

e 46 (4.39)

€1 :07 62:0

Analogoudly to the reasoning in 4.31, we can transfrom this expression in the form

Tr (A Aol

d X (14 €243) U,
= —det[l+ x (1 4+ eA)U,]Tr|A;—
d62 [ X( €9 2) ] [ 11—|—X(1-|—62A2) UO- o

= det (1 + xU,) fs(0o), (4.40)

with f5(c) for atwo-body operator B = A; A, given by

xUs xUs
= Tr| A Tr [ A
15(7) ( 11+XUU) ( 21+><Ug)

XUCT XUJ XUO'
Tr | A A; —Tr A A ) 441
i ( ! Zl—l—an) ( 11—|—on 21—|—an) (4.41)

This procedure can be extended to operators of any order. The calculations will require
more and more computational effort as the rank gets higher.

A particular type of two-body operator is B = ala}ii,.. ts expectation value gives an
element of the two-body density matrix p?:

Prak; = (alalaa,). (4.42)
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The operator B can be written as a product of one-body operators in the following way:

B = (alay,) (afar) — mitin. (4.43)

J

Using expressions 4.31, 4.34, 4.36 and 4.40, one obtains that

/)znlkj = E(Rznlkj)a (4.44)
with R, ;.. given by
anncj = Rianzlk - RlljR}nk- (4-45)

Relation 4.45 shows a strong analogy with the relation between the two-body density
matrix and the one-body density matrix for a pure Slater determinant W, derived by
Lowdin [34] in the framework of Hartree-Fock theory:

Q;ankj = Q:nj Qllk - Qllj Q'}nk? (4.46)

with p' and p?* here defined as:
oi; = (Wlalaw) (4.47)
oy = (U|alatan,| D). (4.48)

Infact, relation 4.45indicatesthat rel ation 4.46 al so holdsfor the grand canonical one-body
and two-body density matrix for a system with a one-body Hamiltonian (a mean field) at
finite temperature (in the grand canonical ensemble). As such, it is a finite-temperature
extension of relation 4.46.

An alternative way to calculate the weigth for an operator A, is based on the derivative of
the exponentia of an operator.

B0 {Z_X 9+ [0, %@] + 1ot CZ—X“H

Vo [X@, [ff(e), [ff(e), ‘;—XU]H . } X0, (4.49)

On taking the trace of both sides, the terms with commutators vanish, so one gets the

result .
. (d g . [(dX o
LX) = T aeXE) 4.
Tr (dee ) Tr ( T (e)e ) (4.50)

This expression can be used to derive the following expression for the grand canonical
expectation value of an operator A:

Tr (Ae-omvont) = Ly (o-sittannted) (4.51)

€

e=0

To evauate the trace on the right hand side one needs a decomposition analogous to the
decomposition 4.1 for e~ If A isaone-body operator or if A isapart of the two-body
Hamiltonian that is treated seperately in the decomposition of e ~##, then adecomposition
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for e+ existsthat is based on the same configurations o as4.1, with slightly modified
operators H'o(€¢) or A’,,(3, €). Then the weights for the Monte-Carlo sampling are given

by

w(o) = Tr [Uaeﬁ“N] (4.52)
Falo) = T [07(0)?] )
_ diedet[u Wl fwlo) (4.53)

with U, (¢) given by

U',(€)
o—5"a(Be)

_ I A0y (8.0) B0 () = Ay (Be) =B o (9)

e BH(0) g Ay, (Be) - 20D

e~ 2 . (4.54)

€

Because [/', (¢) = [/, for e = 0, we can rewrite /' ,(c) as

falo) = %ln |det [1 + xU'5(e)]|| - (4.55)
e=0
Again, the derivative in ¢ can be evaluated by taking a small but finite value for . At
first glance, it looks like this method for the evaluation of observablesisfar less efficient
than the method based on expression 4.32 or 4.41 because one has to calculate the matrix
U!. Thisrequires2N; matrix-matrix multiplications. On the other hand, expression 4.55
exploits the permutational symmetry of the trace:

Tr(ABC) = Tr(CAB) = Tr(BC A). (4.56)

Cyclic permutation of the components oy, o5, . . . oy, Of the configuration vector o, cor-
responds to a cyclic permutation of the inverse-temperature sices in the Suzuki-Trotter
decomposition 2.10. Because of the permutational symmetry of the trace, such a per-
mutation will not alter the value of w (). The factor ) ; in expression 4.30 breaks this
symmetry. Therefore, f4(o) isnot invariant under cyclic permutations of the components
of o, while f' ,(o) is. f'4(o) equalsthe value obtained by averaging f 4 (o) over dl cyclic
permutations of o. It corresponds to inserting the factor ) 4 In every inverse-temperature
dice of {/,. Therefore the variance on f’ (o) will be much smaller than the variance
on f4(o). Furthermore, the method based on f” (o) has the advantage that it is easy to
code in computer-programming language. The fact that it requires more computer time
is not a big disadvantage, because most computer time in SDQMC calculations goes to
the evaluation of the weights w(c), if the sampling interval is well chosen (see section
3.3.2). The systematic error on f' , (o) will be somewhat bigger than the systematic error
on f4 (o), because of the systematic errorsin the decomposition of ¢ ~#H+/uN+ed,
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A particular operator for which the method based on expression 4.55 is useful, is the
Hamiltonian . Its grand canonical expectation valueis related to the interna energy of
the system: A

U= (H)ge. (4.57)

Taking the derivativeto an auxiliary variable ¢ is equivalent to taking the derivative to 3.
Expression 4.55 becomes

Fule) = — XA (458)
f p'=p

Thisisasothedirect analog of thethermodynamical expression4.10. Thethermodynamic
quantities cited in section 4.1 can be determined from the thermodynamical relations
among these quantities. The logarithm of the grand partition function can be obtained by
numerically integrating —U + u N = % In(Z3) from0 to 5. Expression 4.13 immediately
givesthefreeenergy F', whileexpression 4.12 can be used to obtain the entropy. Obtaining
the specific heat in the grand canonical ensembleis more complicated, because it requires
the derivative of U/ to 3 under the condition that N remains constant. Changing the
temperature will also change the number of particles, so a correction has to be made on

the expression

dU
= g2, 4.
C==8"2 (4.59)

These corrections require the evaluation of (Z/N') and (V?). Fromthe total derivative

du ou  oU du
— ==+ , (4.60)
d/3 N constant dﬂ a'u dﬂ N constant
and from the condition X
Al =0, (4.61)
dﬂ N constant

one can obtain an expression for the corrections term on 4.59. The evauation of the
specific heat is easier in the canonical ensemble, where the number of particlesisfixed.

Rank one updates for MCMC sampling in the grand canonical ensemble

In SDQMC based on a Metropolis sampling algorithm, the weight w (') from expression
4.25 has to be evaluated for configurations o’ that differ only in afew components from
a previous configuration o. If the decomposition of the exponential of the two-body
Hamiltonian is based on rank-one or rank-two operators, as explained in section 2.2.2,
then a fast updating scheme for the w(o’) can be used [35]. It requires that U/, can be
written as

Uy = U, + zblb,, (4.62)

where b; and b, are row vectors. We discuss it here for Hirsch’'s discrete Hubbard-
Stratonovich transformation (see section 2.2.2), but it applies more generally to decom-
positions based on rank-one or rank-two operators. In the case of Hirsch's discrete
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Hubbard-Stratonovich transformation, flipping the component of o for the:*" lattice point
in the ;" inverse-temperature dice transfroms U, in the following way:

A A

U, = ULge2aaij(nTi—nli)URg

Uy = Upye20oui=mi g (4.63)

The index L (R) denotes the part operator U, that is obtained by multiplying all the
operatorsfor theinverse-temperature dices | eft (right) of the 5** dice. The corresponding
transform on Uy, is given by 4.62, with

x = —2sinh(2a0y), (4.64)
b = Uppoel, (4.65)
by = eUjprs, (4.66)

where ¢; is the row vector with 1 on the :** entry and zero’s on the other entries. The
weight attributed to the new configuration is now given by

wi(o’) = det (1 + xUypsr)
= det <1 + xUio + Xxb{ln)

1
= det(1 4+ yUp)det (1 4+ ———vzblb.
et (1 4+ xUys) e(+1+XUTerlz)
1
- w 1+ vaby——pt 4.67
uT(U)< + xx 21+XUT0 1) ( )

Thus wq(o’) can be calculated without computing Uy,.. Instead of N, matrix matrix
multiplications, the calculation involves only N, matrix vector multiplications. This
reduces the number of needed flops with afactor Ns. If the Metropolis trial move ¢’ is
accepted, then (1 4+ yU;,)~" has to be determined in order to apply expression 4.67 for
the new trial moves. This can be done in O (N3) flops if the matrix inversion is based
on a () R decomposition [12]. Note that if this decomposition is known, the inverse has
not to be calculated explicitly in order to evaluate 4.67. Besides, the matrix (1 + xUy,) ™"
can be used for the eval uation of expectation values of observables using expressions 4.32
or 4.41. After anumber of updates, the factorization of (1 + xU;,)”" degrades due to
rounding errors and has to be recomputed from scratch.
This scheme can be improved further if one updates o only in the last inverse-temperature
dice. Then, in the case where b, and b, are given by 4.65, 4.66, one has that

bl = e, (4.68)

by = elUp. (4.69)

Expression 4.67 can now be written as

) = w(o z|1— L
wi(o’) = wy(o) [1 + (1 T XUTG)J : (4.70)



4.3 SDQMC inthe canonical ensemble 85

In this case no matrix vector multiplications are needed and (1 4+ xTU1,)”' needs to be
updated only if the trial moveis accepted. Thisupdate can bedonein O (N3) flops. After
a few steps by changing the last dice only, the last-but-one dice can be brought to the
last position using the cyclic permutation symmetry of the grand canonical trace. This
requires only two matrix matrix multiplications. If the decomposition of ¢ =*# isbased on
diagona and rank-one matrices, this cyclic permutation of one inverse temperature dice
requires only O (N2) flops too. A minor disadvantage of these cyclical updates is that
they amount to a deterministic-scan Gibbs sampler, while a random-scan sampler can be
expected to lead to shorter autocorrelations (see section 3.4.2).

In some cases, several steps of the form 4.62 will be needed to transform U, in U,.. The
procedure then will have to be repeated a number of times for one update. The major
limitation of this scheme isthat it only alows trial moves where one component of o is
changed. Inalot of cases, trial moves where more components are changed, will lead to a
more efficient sampling. Instead of repeating the rank-one updating scheme a number of
times, it can be more efficient to calculate U/, from scratch for every trial move. A scheme
that reduces the number of matrix multiplications considerably in such cases, isgivenin
section 4.6.2.

4.3 SDQMC in the canonical ensemble

The canonical ensemble is obtained by restricting the grand canonical ensemble to states
with afixed number of particles V. The SDQMC can be applied in the canonical ensemble
inan anal ogousway asinthegrand canonical ensemble. Analogonsfor thegrand canonical
expressions 4.21, 4.22 and 4.23 are found by replacing the grand canonical trace operator
with the canonical trace operator for the NV-particle states and by omitting the factor with
the chemical potential y:

(e = Do) (471)
w(o) = Try [UG] (4.72)
Falo) = Try [AT,] fw(o). (4.73)

Now we need away to evaluate the N-particletrace. Formally, one can obtain expressions
for the canonical trace from expressions for the grand canonical trace by taking the
derivative of the latter to the variable y = ¢”*. Let the grand canonical trace for an
operator {7 be given by

Tr (UeN) = Tr (X)), (4.74)
then the canonical expectation value of A can bewritten as
N d\Y . .
Try (U) = (@) Tr (UXN)\XZO. (4.75)

For the weight w(o) thisleads to the formal expression
w(o) = Try [Ug]
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d\" . o
_ (a) o (0|,

J\N
= (@) det (1 + xUs )|, =g - (4.76)

Thecanonical weight w (o) isgiven by thecoefficient of ¥ inthepolynomial det (1 + xU,).
This polynomial is closely related to the characteristic polynomial of the matrix U,, as
is explained in the next sections. Thus the calculation of canonical traces for SDQMC
amounts to the evaluation of the characteristic polynomial of the matrices U,,. For this
purpose we developed an accurate and fast algorithm. Accuracy is very important here,
because we a so want to evaluate the first and second derivatives of the canonical traces,
for the calculation of observables. Speed isimportant, because canonical weights have to
be determined for every Markov step. The Metropolis sampling scheme can be optimized
in such away that the evaluation of the trace becomes one of the bottlenecks of SDQMC
programs.

4.3.1 Numerical evaluation of canonical traces

In order to cal culate the canonical trace numerically, several methods have been suggested
by Lang et al [37]. One can start from the relation

det (1 + xU,) = e Min(t+x0)] (4.77)
00 _1 n—1
= exp [Z (=1) X“TF(U:)] . (4.78)
n=1 n

Picking out the coefficient of y in the series expansion of both sides gives a relation
between Try (1/,) and Tr (7,,), Tr (U2) ..., Tr (UY). Though mathematically elegant,
thisformulais unpractical: it isinaccurate because it is very sensitive to roundoff errors,
especially if theeigenvaluesof U, differ by several ordersof magnitude, which iscommon
in SDQMC. Itisasoinefficient because it requires V/2 matrix multiplications. Therefore
themethodisonly useful for small V. Lang et al also suggest another method: calculation
of the canonical trace using coherent states. This method requires the integration over
N3 additional fields. However, since the integration is carried out with a Monte-Carlo
algorithm, thisrequiresonly dightly more computational effort than the previous method.
But it aggravates the 'sign problem’ (see section 4.5). A third method, suggested by the
same group in another paper [38] and claimed to be better than the previous ones, uses the
operator

(4.79)

?

2 N
Py = PN / TdO _isN (Butis)N
o 2w

that projects the ensemble with V' particles out of the grand canonical ensemble. Here,
N is the number operator. The parameter 1 is arbitrary here and chosen to minimize
numerical instabilities. The canonical trace is then given by

Tr (1) = e [ 2emion e (cmsion ) (4:80)

27
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_ -oun [FTAS _isn I (1 n 62‘%6(#-9)) : (4.81)
A

0o 27

where ¢, isthe A" eigenvalue of the matrix U,. This matrix U, is used in diagonal-
ized form because this is numerically favorable: the grand canonical trace can now be
evaluated by multiplying Vs scalar factors, otherwise one has to evaluate a Ns x Ng
determinant for every value of ¢. The integration can be carried out exactly with an
Ng-point quadrature formula.  This method is stable if 4 is well chosen. The value
= (Re(en) + Re(eny1)) /2 issuggested. However, if U, is diagonalized, the canoni-
cal trace can be evaluated much more easily by explicit construction of the polynomial

Ns

det (1 + xU,) =[] (1 + xe) (4.82)

=1

If this polynomial in y isconstructed from the smallest up to the largest eigenvalue, it can
be computed in an easy and stable way. Try (Ug) is then given by the coefficent of .
The polynomial can be constructed even more efficiently without diagonalization of the
matrix U,, asis explained in the next section.

4.3.2 Algorithm for the calculation of the characteristic polynomial
of a general square matrix

The characteristic polynomial of an Ns x Ng matrix U is given by
Por (x) = det (U = y). (4.83)
The coefficient of xV in P (x) isequal to (—1)" timesthe coefficient of x(Ns=N) in
P (x) =det (14 xU). (4.84)

The basic idea of the algorithm is to consider 1 + yU as a matrix of polynomias in
x. The determinant in equation 4.84 can be calculated using Gaussian elimination, with
polynomials instead of scalars as matrix elements. Because the multiplication of two
polynomials of degree N requires about 2/N? flops and the calculation of a determinant
about N2/3 polynomial multiplications, the calculation would require a number of the
order of N2 flops, which is too much for an efficient implementation. This number can
be drastically reduced if U is transformed to an upper-Hessenberg form by a similarity
transformation (aHousehol der reduction to Hessenberg form requires approximatly £ N2
flops[11]). Thisleaves the coefficients of P/, () unchanged because

det [1+x (Q7'UQ)] = det [ (1 + xU) Q] (4.85)
=det (1 4+ xU). (4.86)

In order to calculate the determinant we transform 1 + xU to upper diagona form by
Gaussian elimination, requiring now only N2 polynomia multiplications. The Gaussian
eleminationisperformedfromtheright bottom corner of the matrix up to thetop |l eft corner
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because in SDQMC the right bottom corner often contains the smallest elements, so that
the summationsinvolved are performed from small to largeterms. Thisisless sengitiveto
roundoff errorsthan the summation the other way round. We start with 7Vs=14 yU. Now
we bring column after column in upper triangular form. Suppose that 7'/ has columns ;
to N aready in upper triangular form, i.e.

T, =0, (4.87)
for: > kand k£ > 5. Now we calculate
7' =TiG, (4.88)
where ,
Gy = i, (4.89)
except for . o
N (40

In the end we obtain the upper triangular matrix

T'=TNs GNs gNs=1 ... G2 (4.91)

?

so that
Pir(x) = det(l+xU)
= det (TN5>
det (T)
dot (GNs V51 . G32)
TNs, T
OIS, T

= Tl (4.92)

because T}, = T};. The operations can be ordered to minimize memory use. Thisleadsto
the following agorithm (¢, ; corresponds with the coefficient of x* in Ti):

algorithm for calculating the coefficients of the characteristic
polynomial of a Ng x Ng matrix U
reduce U to upper Hessenberg form

DOj = Ns,1,—1

DO =1,j
DOk = Ns—j,1,—1
teyri = Uijte o — Ujsa e
ENDDO (4.93)
t1;=U;
ENDDO

DOk =1, Ng — j
t; = 1tg; +1g 41
ENDDO
ENDDO
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In the end ¢, is the coefficient of * in P/, (). This agorithm cannot break down and
requires N2/2 + N% — Ns/2 flops. If one needs only the coefficient of x", e.g. for the
calculation of an N-particle tracein SDQMC, the number of flops can be reduced further
by calculating the polynomials only up to degree N. This restricts the loops over k to
values smaller than or equal to V:

DO k = MAX (Ns — j, N),1,—1. (4.94)

Together with the Householder reduction to the upper Hessenberg form this makes less
than 4 N3 flops. Diagonalization of the matrix I/ would requireabout 10 N3 flopswith the
QR agorithm [11].

Numerical tests

We have tested our algorithm numerically on its speed and accuracy. Al the tests were
doneinFortran77 (DEC FortranVV3.8) on aDigital Alphastation 255/300MHz workstation
running Digital Unix 3.2D. For the reduction to Hessenberg form and the diagonalization
optimized Lapack routines were used [40]. For the part of the agorithm listed in the
previous section only the standard optimizations of the Fortran compiler were used.

The speed was tested by calculating, for several matrix sizes, al the coefficients of the
characteristic polynomial of 100 matrices with random elements. This was done with
our agorithm and with complete diagonalization. The speed was measured by counting
the number of cycles executed by the procedures of the agorithms (fewer cycles means
faster calculation) using the "prof -pixie’ command (see reference [41]). Table 4.1 lists
the results. It is clear that our algorithm is much faster than complete diagonalization:
from afactor 4.5 for small matricesto afactor 1.8 for large matrices. The decrease of this
factor for large matrices can be understood by the fact that the routines for the reduction
to Hessenberg form and diagonalization are strongly optimized while the routine for the
algoritm 4.93 is not, and that these optimizations become more and more efficient with
larger matrix sizes.

In order to test the accuracy, we calculated 200000 random samples with a SDQMC
program for the 4 x 4 Hubbard model with 8 up and 8 down electrons, with I/ = 4 and
3 = 6, following the method of reference [35], but taking the canonical trace instead of
the grand-canonical one (see chapter 5). The calculation was done in double precision
and in single precision using our algorithm and complete diagonalization. As a measure
for the accuracy we used the average absol ute value of the difference between the single-
and double-precision result divided by the double-precision result. For our algorithm
we found a value of 0.00186 + 0.00005 and for the complete diagonalization we found
0.00607 4+ 0.00010 (error limits at 95% confidence level), indicating that our algorithm
is more accurate. This could be expected since it requires less operations on the data.
Furthermore complete diagonalization was much more sensitive to overflow errors than
our algorithm. At valuesof 5 > 6 complete diagonalization (in single precision) was not
usable anymore.
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Matrix dimension || Algorithm4.97 | Complete diagonalization | Ratio
4 451400 1983818 | 4.39

6 1009400 4413843 | 4.37

8 1760300 8062663 | 4.58
10 2870100 12511637 | 4.36
15 7261300 29676436 | 4.09
20 14224100 55696656 | 3.93
25 25524300 93696774 | 3.67
30 41735900 144177197 | 3.45
35 63852100 209670202 | 3.28
40 90395400 290658105 | 3.22
45 126513800 388488344 | 3.07
50 171095900 512056714 | 2.99
60 284484900 794032492 | 2.79
70 447113900 1163945220 | 2.60
80 652709400 1630550332 | 2.50
90 926006900 2207209655 | 2.38
100 1251268900 2923248380 | 2.34
150 4268580600 8925077120 | 2.09
200 | 10018384500 20050929483 | 2.00
300 || 32993383700 63384810388 | 1.92
400 77249914100 145321243773 | 1.88
500 || 149825926400 278218705522 | 1.86
600 || 257427888100 474763616745 | 1.84
700 || 407433443000 745631287828 | 1.83
800 || 607094132500 1104878051129 | 1.82
900 || 863225666500 1564619645628 | 1.81

Table4.1: Comparisionof the number of cycles needed for the cal culation of the coefficients of the
characteristic polynomial of 100 matriceswith random elements, for several matrix dimensions.
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Applicationin SDQMC

The agorithm presented in the previous section can be used to calculate the canonical
trace of the operator U, . Because of equation 1.16itisclear that if thealgorithmisapplied
to the matrix U, the canonical traceis given by

A

-er (Ua> =1in1- (495)

Care has to be taken to preserve stability in low-temperature SDQMC. Problems with
loss of significant digits and overflow can occur for large 3. In order to avoid the former
problem, the product in equation 4.1 can be orthonormalized after every few factors, as
explained in section 4.6.1, resulting in a decomposition

U,=QDR, (4.96)

where () is unitary, D diagonal with real positive elements on the diagonal, and R
unitary or triangular, according to the orthonormalization technique used. V' and W have
determinant 1 and are well conditioned matrices. The elements of D can vary over many
orders of magnitude because of the exponential nature of {/,. The algorithm 4.93 can be
modified so that it keeps the elements of D separated from the well-conditioned parts ()
and R. This enhances the stability. It leeds to the following algorithm:

algorithm for calculating the canonical trace of U, (U, = QDR)
reorder the diagonal elements of D in descending order
permute the columns of ) and the rows of R accordingly
U=RQ
reduce U to upper Hessenberg form
DOj = Ng,1,—1
DO: =1,y
DOk = Ng—yj,1,—1
theyti = Uijtejpr — Ujgajtei
ENDDO
t1; = Ui (4.97)
ENDDO
DOk=1,Ns—j
tri = tej + trjrr (Drss/ Dj)

ENDDO
DOk = Ns—j,1,—1
dpp1 = dy D,
ENDDO
dl == D]‘
ENDDO

'er (Ua) =ty1dy.

Also in the reduction of D U to upper Hessenberg form the elements of D and U can be
kept separated. Overflow can be avoided by working with the logarithms instead of the
actual values of the elements of D and d.
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4.3.3 Observablesin the canonical ensemble

For the evaluation of the canonical expectation value of an operator A, weneedto calculate
thecanonical trace Try (AUJ) . Theexpressionsderived in section 4.2.1 for the evaluation
of observablesin the grand canonical ensemble, can be adapted to the canonical ensemble.
For a one-body operator A, we can use the analogon of expression 4.30:

falo) = Try [AT, ] fw(o) = %m [Trn [Q4 () U]

(4.98)

e=0

Now the canonical trace of A (¢) U, can be evaluated using the algorithm presented in
the previous sections. The derivative in ¢ can be evaluated by taking a small but finite
value for ¢ as in expression 4.29. Another way to calculate Try (AUC,) is obtained by

taking the N** derivativeto y in expression 4.31

-er (/AlUg> = L i N-ﬁ_(AUJ\(N)
N!' \dy ’
x=0
1 [ d\" YU,
= — | — det (1 U,) Tr| A—
N (dx) [e( Fal) ( l-l—ng) i
X:
1 d\"! U
= — | — det (1 U,) Tr{ O z .(4.99
(N —1)! (dx) i) ( 1+><Ua>‘ 0( )
X:
If U, isdiagonalizedto QTEQ , E;; = ¢;, we obtain
A A A NS
Try (AUJ) = Zchi AIZ'Z', (4100)
=1
where
c. d N-1
= | — 1 - 4,101
CN,Z (N— 1)' (dX) ]H?EZ( +Xe]) ~ 3 ( 0 )
x=0
and
A= QAQH. (4.102)

The coefficients ¢ ,; can be calculated efficiently by constructing the polynomials

|
-

7

pr: (x) = 11 (1 + xe;), (4.103)
7=1
and
N
pri(chi) = T] (1+ xe;), (4.104)
7=i+1

so that cy ; is given by e; times the coefficient of x* in the polynomia py.; (x) pr.i (x)-
To calculate ey g - . . e,y We need about 6V N flops. The time-consuming steps are the
diagionalization of U/, and the calculation of A’.
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Expectation values for a two-body operator B can be obtained by decomposing the two-
body operator as a sum of products of one-body operators:

B=Y" AiAs. (4.105)

The canonical trace for a product of two one-body operators B = A, A,, can be evaluated
as

N d d . . .
Try [A1 A0, | = d—qd—qTrN Q4, (1) Qy, (e2) U] (4.106)

Again, the derivatives can be evaluated by taking small but finite values for ¢; and e,.
Alternatively, an expression for Try (AUJ) can be obtained by taking the N derivative
to x in expression 4.40:

61:0, 62:0

Try (A A0, )

N
L (%) Tr (A, Al Y)

x=0

1/ d\" xUs xUs
= e o) T Tr [ Ay—
N1 (dx) {det(HXU >l r<A1 +><U) ( 21+XU0)

xUs xU, U,
Tr| AjA,— —Tr[ A A. .
* ( ' 21+an) ( T X, 21+><Uo) H

After diagonalization of U, this becomes

(4.107)

x=0

Ns Ngs

'er(AlAz ) ZCNZ AYA) IS i (A Al — Al Alyy), (4.108)

=1 j=1

where the coefficients d ;; are given by

(4.100)

1 d N-=2
dnii = eici g (@) IT (1 + xex)

The dy ;; can be evaluated in an analogous way as the cy ;, requiring now about 6 N N2
flops. Expectation valuesfor multi-body operators can be cal cul ated anal ogously, but will
require more and more flops as the rank gets higher. Note that the relation 4.45, that
can be seen as a finite temperature version of Lowdins expression 4.46, has no smple
analogon in the canonical ensemble. The correct expression is obtained by taking the N
derivativeto y of both sides of relation 4.45.
Also the expression 4.51 for the grand canonical expectation value of an operator A can
be adapted to the canonical ensemble:

Try (A=) = diTrN (emPH+et) (4.110)

€

e=0

Again, this method is particularly useful for the calculation of the internal energy
U = (H). (4.111)
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Expression 4.58 can be adopted without modification:

d

f'ulo) = = —z Infw(s, §')]

- (4.112)

B'=p

The canonical partition function is obtained by integrating — U/ = % In(Zg) from 0 to 5.
The entropy and the free energy can be obtained in the same way asin the grand canonical
ensemble. The specific heat C' can be evaluated from

C =B () - (H)?). (4.113)
For the observable /72, thefactor f52(o) from 4.73 is given by

fre(o) = (j—gl)ln [w(e, 3] + [f’H(a)]Q. (4.114)

B'=p

4.3.4 Canonical or grand canonical ensemble?

In the thermodynamic limit, i.e. when the system size is made infinitely large while
density and temperature are kept constant, the canonical and grand canonical ensemble
yield the same physical results. Because of this equivalence, one could raise the question
which ensemble to choose for SDQMC calculations.

From the resultsin the previous sectionsit is clear that the grand canonical ensemble has
anumber of advantages:

e The evauation of the determinant 4.25 for the weight w(c) requires 2N flops,
while the evaluation of w(o) in the canonical ensemble requires about 4N flops.

e SDQMC in the grand canonical ensemble can be speeded up even more, using
the rank-one updating scheme of section 4.2.1. No such scheme for the canonical
ensembl e exists.

e The evaluation of the factors f4o for the observables is done faster in the grand
canonical ensemble.

¢ For applicationsin condensed matter physics, e.g. for the Hubbard model, the grand
canonical ensembleis physically more relevant because it allows fluctuationsin the
particle density. In real systems, local fluctuations of the density will occur.

¢ Becausethegrand canonical trace sumsover more statesthan the canonical trace, the
average sign of the weightsw (o) can be expected to be higher in the grand canonical
ensemble than in the canonical ensemble. The 'sign problem’ (see section 4.5) is
less severe.

Altough the computations are more time consuming, the canonical ensemble has its
advantages over the grand canonical ensemble too:
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¢ For mesoscopic systems, e.g. atomic nuclel, the canonical and grand canonical en-
semble arenot at all equivalent. A clear illustration of this, are the odd-even energy
differencesin nuclei caused by pairing correlations[46]. Odd nuclei have relatively
higher ground-state energies. At low temperatures, their weight in the grand canon-
ical ensemblewill be suppressed compared to the even nuclei. Therefore, the grand
canonical ensemble gives little information on the ground-state properties of odd
nuclei, at any value of the chemical potential .. To study low temperature properties
of odd nuclei, the canonical ensemble has to be used.

e For physical systems with a fixed number of particles, like atomic nuclel, the
canonical ensemble is more natural.

¢ Evenfor systemsthat ideally should be studied inthe thermodynamiclimit, SDQMC
are only possible at mesoscopic sizes. Shell effects can influence the results. For
the 4 x 4 Hubbard model, e.g., states with 5 spin-up and 5 spin-down particles
or 8 spin-up and 8 spin-down particles dominate the grand canonical results be-
cause of the shell structure of the single-particle part of the Hamiltonian. States
with other particle numbers migth be more representative for the propertiesin the
thermodynamic limit. Thistopic is discussed more extensively in chapter 5.

¢ Ground-state properties can be studied at lower values of 3 in the canonical ensem-
ble, because low-lying excited states with different particle numbers are projected
out. With decreasing temperature, expectation values for observables converge
faster to their ground-state values in the canoncial than in the grand canonical
ensemble.

e The specific heat is more easily evaluated in the canonical ensemble than in the
grand canonical enemsble.

Because the final aim of thiswork is the application of SDQMC to atomic nuclei, we only
did calculations in the canonical ensemble.

A way to combinethe speed of grand canonical SDQM C cal cul ations with the advantages
of canonical SDQMC calculations could be given by the guided Metropolis sampler of
section 3.4.5. The grand canonical trace, with an appropriately chosen chemical potential,
could beused asaguiding weight for the canonical trace. Thishasnot yet beeninvestigated
and is atopic for further research.

4.4 SDQMC with ground-state projection

4.4.1 TheBoltzmann operator asa ground-statefilter

In the limit of low temperature or high 3, the weight e %% of the excited states in
the canonical or grand canonical ensemble becomes negligible compared to the weight
e~PFo of the ground state. Hence, low temperature thermodynamic expectation val ues of
operators are equal to their ground-state expectation values. Instead of taking the low
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temperature limit of the thermodynamic expectation values, one can also obtain ground-
state expectation values by applying the operator e —~AH 0 aSlater determinant @ that hasa
considerable overlap with the ground state. The Boltzmann operator strongly suppresses
the amplitudes of the components of the excited states U; in & by a factor ¢ ~#(Fi=Fo),
Therefore, the ground state is approximately given by

Wo) ~ 7| D). (4.115)

An obvious choice for the trial state ¢ isthe N-particle Hartree-Fock ground state of the
system. The expectation value of an operator A is given by

e‘gﬁfle_gﬁ‘ CI)>
(37Tw)

<\IJO ‘;1‘ \IIO> ~ <(I) ‘ , forlarge §. (4.116)

Again, thisexpression can be eval uated using the decomposition 4.1 and MCM C sampling.
To see this, we write expression 4.116 as

(0 \e—i’ﬁAe—éﬁ\ 0y ~ (vr, \A\ W)

A = , 4.117
@) T WiV ()
with
w) = 2|9,
TR = e 27 |9). (4.118)

Clearly, |¥;) = |¥r). But the decomposition of the operator e~ 21 will lead to different
termsfor the left and the right state when sampling the configurations.

W,,) = S U, |®),
oL

V) = Y U,,|9). (4.119)

The expectation value <\Ilo ‘4‘ \IJO> can now be evaluated as

(o || W) 2o g‘(“ufw(") (4.120)
with
w(o) = (¥, >
= < A ®) (4.121)
falo) = (9, UR>/w<>
= (8|01, AU, | @) fw(0). (4.122)

The configuration o denotes here apair of configuration (o, or). The SDQMC obtained
in thisway, is often called ’ Projector Quantum Monte-Carlo’ method [7].
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4.4.2 Evaluation of weights and observables with ground-state pro-
jection.

Theweight w(o) can be evaluated using expression 1.6. Let M denotethe Ns x N matrix
that represents the Slater determinant ®. Then w(o) isgiven by

w(o) = det (MTUL, Up, M) . (4.123)

For the evaluation of f(o) for a one-body operator A, we need once more the operator
@ ; (e) fromsection 4.2.1. Thefactor f4(c) isgiven by

?)

d
= —det (MTUL (14 AU, M) .
de

falo) = S (®]02,Q5 () U,

Jw(o). (4.124)

€

i Jw(o).

£=

= det (M UL, Up, M) Tr ( MTULC,AURC,M> Jw()

MTU;,Up, M

1

Tr (—N T Y MTU, AUg, M) . (4.125)
Expressions for expectation values of products of one-body operators can be obtained by
inserting more operators 4,(¢;) in 4.124, analogous to the reasoning that was followed
in section 4.2.1 for the grand canonical trace of higher order operators.

The cyclical permutation symmetry of the (grand) canonical trace is lost here, so there
is no analogon for the method based on expression 4.55. Because it is a ground-state
method, thermodynamical quantities like entropy or specific heat obvioudy cannot be
obtained using ground-state projection.

4.4.3 Ground-state projection or (grand) canonical ensemble?

Compared to the SDQMC in the grand canonical or the canonical ensemble, SDQMC
with ground-state projection has the following advantages:

e The evaluation of the weight w(o) in the ground-state projection method requires
N; multiplications of an Ns x Ns matrix with an Ns x N matrix, while in the
(grand) canonical method, it requires V; multiplicationsof an Ns x Ng matrix with
an Ns x Ns matrix. Therefore the ground-state projection method requires afactor
N/Ngs lessflops.

o If the overlap of the trial state ® with the true ground state @, is large, the method
will converge fast. Ground-state properties can be obtained at lower values of 3
than in the (grand) canonical method.

¢ Rank-one updates analogous to the rank-one updates for the grand canonical en-
semble from section 4.2.1 are possible. However, the cyclical updating procedure
for the inverse-temperature dices explained in section 4.2.1 cannot be used here
because of the breakdown of the cyclical permutation symmetry.
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The major disadvantages are:
e Theresultsare only physically meaningful in the limit of large 5.

¢ The ground-state projection method suffers more from sign problems (see section
4.5) than the canonical or the grand canonical method.

¢ The ground-state projection method can only be used if there exists a Slater deter-
minant ® with a considerable overlap with the true ground state, in other words, if
the Hartree-Fock method gives a good approximation of the ground state. So the
ground-state projection method can only be used to study ground-state properties
beyond Hartree-Fock in those cases where Hartree-Fock gives already areasonable
description. The more interesting cases where the Hartree-Fock method does not
give satisfactory results, are much more difficult to study with the ground-state pro-
jection method. For the4 x 4 Hubbard model, with strength I/ = 4|¢|, we cal cul ated
the overlap of the Hartree-Fock ground state  with the true ground state ¢, using
the canonical ensemble:

_[jH

(@]0o) 2 = 2ITD) (4.126)
Try (6_5H>

in the limit of large 5. For a system with 5 spin-up particles and 5 spin-down
particles (5 1 5 ), the overlap was about 0.7, while for the 6 1 6 | system the
overlap was too small to be determined accurately (smaller than 0.05). Note that
the5 1 5 | system corresponds to a closed shell configuration of the one-body
Hamiltonian.

Theselast tworemarksareclosely related to amajor problem of the ground-state projection
method. The method has been used extensively for the study of the Hubbard model. These
calculations where mostly done at particle densities for which the ground state of the one-
body part of the Hamiltonian is a closed shell configuration, because at theses densities
the sign problems are least and the Hartree Fock ground state has alarge overlap with the
true ground state. But exactly at these densities the influence of the shell structure related
to the mesoscopic scale of the system, isstrongest. Therefore, these densities are the least
suited to extrapolate to the thermodynamic limit. The system has qualitatively different
properties at these densities compared to other densities, asisillustrated in chapter 5. The
fact that the ground-state projection method workswell for one class of densities but not
for aclass of densitieswith qualitatively different properties, bearsthe risk that properties
for the former densities might be extrapolated blindly to al densities, and that properties
specific for the latter densities might be overseen.

The ground-state method is a fixed-N method. As disussed in section 4.3.4, thisisin
some cases an advantage, in other cases a disadvantage.

To our opinion, the canonical methods are to be preferred over the ground-state projection
method for most applications. Only for the study of ground-state properties of a system
with asmall number of particles, preferably aclosed shell configuration, the ground-state
projection method will perform better.
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4.5 Thesign problem

Until now we always assumed that the weights w (o) where positive, so that they could be
sampled using MCMC methods. However, thisis generaly not the case. The weightsare
related to the nature of the operators [/, = e~5-(%) from expression 4.1. If S,(3) werea
Hermitian operator, then the operator {7, would be positive definite and the weight w(o)
would allways be positive, as well for the canonical, grand canonical or the ground-state
projection method. Because of the Trotter breakup 2.10 of ¢=# in inverse-temperature
dices, S,(3) isgenerally not Hermitian.

Though negative weights can be handled in MCMC, as explained in the next section, they
pose a fundamental problem: the variance of the results becomes infinitely large if the
average sign of the weights goesto zero.

Itisaproblem encounteredin al quantum Monte-Carlo methodsfor fermions. Itisrelated
to the antisymmetric nature of the fermion wave functions. For SDQMC, itisnot asworse
as for other quantum Monte-Carlo methods. In the canonical ensemble, for a number
of systems, the SDQMC results converged to their ground-state values before the sign
problem got too severe.

451 MCMC with non-negative weights

If the weight w(o) becomes negative for some configurations o, MCMC methods cannot
be applied directly in order to calculate expectation values of the form

_ Yo flo)w(o)
E(f) = IR (4.127)
Instead, one evaluates
_ Lo flo)s(a)w(o)] 3, s(0”)w(a”)| 28
E) ORI | R S e (4129
_ EBu(/fs) 4.129
Epui(s) (4129
ith

" s(o) = w(o) . (4.130)

[w(o)]

The quantity ,
5 = Epu(s) = 220wl (4.131)

Yo fw(o’)|
iscaled the’ average sign’.

To evaluate E( f) using Monte-Carlo techniques, we have to generate a sample S =
ol ol oM where the ¢/ are distributed according to |w(o)|. The expectation
value E( f) is then approximated as

E(f) ~ fs = EESS({S ‘9)). (4.132)
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This estimate becomes exact when the sample size M goes to infinity. Because the
sample average Es(s) of the sign appears in the denominator of expression 4.132, it can
be expected that the error on fs will be large large when the average sign s issmall.

If the sample S is obtained using independent sampling, an estimate for the error on fs
can be obtained from expression 3.123:

Var(fs)
((Es(fs) = (fs)Es(s)))
- (Es(s)) ' o .
_ (= [ s(o) = U)ol )] [ (o) — shsle]),

52

The notation (.) denotes for the weighted average over al possible samples S of size M
that can be generated by independent sampling according to w (o). Because ¢l and o]
areindependent for : # j, and because

(e s(ah) = Ep(fs),

<5(U[j])> = Eu(s),

Eui(fs) _

Ejwi(s)
expression 4.133 smplifiesto

(5 S [Fs(e) = (£5)s(o)] )
Var(fs) «~ -2

<ﬁ f\il [f(cr[z’]) _ <fs>]2 S(O_[i])2>

2Bl [(f = (£5))7]

2

S
Epl |(f — E(f))°]

Y e (4.134)
Thisshowsthat the variance on fs isproportiona to 572. Thustheerror on fs isinversely
proportional to s.
In the case of dependent sampling, using Markov chains, expression 4.134 has to be
multiplied with an appropriate factor » as discussed in section 3.3.1 In this case the factor
isgivenby r(fs — E(f)s), with r defined by expression 3.89.
Expression 4.134 shows the fundamental limitations of MCMC methods for the sampling
of non-negative weights: the error on the Monte-Carlo resultsis inversely proportional to
the average sign of the weight w(o). Thisisthe famous’sign problem’.

4.5.2 Thesign problem and the Hubbard-Stratonovich transform

The’sign problem’ arises not only in SDQMC, but also in most other fermionic quantum
Monte-Carlo methods. The origin of the sign problem in methods based on the Hubbard-
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Stratonovich transform (see section 2.2.1) was elucidated by Fahy and Hamann [42].
The operator ¢ =¥ transforms an initial Slater determinant |®%)) into a state ¢ =%7| @),
Using the Hubbard-Stratonovich transfrom, this state can be written as a sum of Slater
determinants

100 = [ w(o)dre o]0, (4139

A single Slater determinant is 'diffused’ to a distribution of Slater determinants given
by 4.135. This diffusion proceeds at each inverse-temperature interval, with a rate pro-
portional to 5/N,;. Fahy and Hamann showed how this diffusion of Slater determinants,
in the limit of 3/N, — 0, can be described by a differential equation of motion for a
distribution of Slater determinants f(®, ), with the inverse temperature 3 playing the
role of a’time’ variable. This equation of motion takes the form of a diffusion equation
with drift and branching terms on the manifold of Slater determinants. One can define a
"parity’ transformation P on the Slater determinants by

P|®) = —|®). (4.136)

This parity transformation commutes with the diffusion equation operator. Therefore, the
eigenfunctions of the diffusion equation will have a definite parity. Fahy and Hamann
point out that the eigenfunction with the highest eigenvalue will be even under P. This
eigenfunction is denoted as f*(®). Because of the nature of the diffusion equation, the
distribution f(®, 8) will tend to f*(®) for large 5. But this distribution is related to a
vanishing many-body state, because it contains |®) and —|®) with equal weight:

dY_[H(e)e) = Zf*(é)w = 0. (4.137)

Only odd-parity distributions can give rise to nonzero many-body states. Therefore,
the physical many-body state e~ |®[)) that we want to describe using the Hubbard-
Stratonovich transform, is related to the odd-parity eigenfunction f~(®) that has the
highest eigenvalue. For the ground-state projection algorithm, the average sign 5(®) is
given by

oy e f(®,8)(01]|9)

= @, e (4139
The denumerator couples only to the odd-parity component of f(®, 3), while the denom-
inator couples only to the even-parity component of f(®, ). If theeigenvalue £~ related
to /= is smaller than the eigenvalue E+ related to £, then for large enough values of
3, the average sign can be expected to decrease exponentially with increasing 3, propor-
tional to e=?(F*~F7)_Onlyif f~ and f* are degenerate, the average sign will not go to 0.
This reasoning extends directly to the canonical and the grand canonical ensemble, since
there the average sign is given by the trace of 5(®°l) over a complete set of initial Slater
determinants ®°1.
This discussion showsthat the sign problem isan intrinsic property of any quantum many-
body method based on the Hubbard Stratonovich transfrom. One can try to deal with it,
in the following ways.
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e The sign problem is avoided if f* and f~ are degenerate. In some cases, thisis
guaranteed by underlying symmetries of the system (see next section).

e If the diffusion is slow, the decrease of the average sign s will be dow too. Then
3 might till be large enough at values of 5 that are physically relevant, such that
SDQMC calculationsarepossible. Slowing down the diffusion amountsto reducing
the non-Hermitian components of the operator 5, (/). Another way to slow down
thediffusion, isto use adiscreteform of the Hubbard Stratonovichtransforminstead
of a continuous one.

e The discusson of Fahy and Hamann only applies to the Hubbard-Stratonovich
transfrom, other decompositions of e=PH such as the ones discussed in section
2.2.2, might in some cases lead to a larger average sign (however, in other cases
they might lead to a smaller average sign).

45.3 Decompositionswith good sign characteristics

In a number of cases an underlying symmetry of the interacting many-fermion system
guarantees a strictly positive weight w(o).

A first example is the attractive Hubbard model (see also chapter 5). As explained in
section 2.2.2, Hirsch's discrete Hubbard- Stratonovich transform leads to a factorization
of the matrices U, in aspin-up and a spin-down part:

(U, 0
U, _< 0o, ) (4.139)

The operator {/, factors correspondingly in U;,0/;,, where U;, acts only on spin-up
particlesand {7 1o only on spin-down particles. Thetraceof U, can bewritten asa product
of a spin-up and a spin-down trace:

-fr (ﬁgeﬁﬂN) = 'frT (UTgeﬁ'uNT) 'frl (Ulgeﬁp'Nl) , (4140)
for the grand canonical trace, or
-erTNl ([70) = 'frTNT (UTJ) 'frlNl (Ulg) , (4141)

for the canonical trace. For the attractive Hubbard model, Uy, = U},. Therefore,
if Ny = Nj, the traces 4.140 and 4.141 are squares of real numbers and thus always
positive. The repulsive Hubbard model with N; spin-up and V| spin-down particles can
be transformed into a attractive Hubbard model with Ny spin-up and Ng — N| spin-down
particles by a particle-hole transformation of the spin-down particles (see chapter 5).
Therefore, the repulsive Hubbard model with Ny + N| = Ng, afortiori the half-filled
Hubbard model, has strictly positive weights too.

Another class of systems that have no sign problems, was found by Lang et al. [37]. Be-
cause of spherical symmetry andtime-reversal invariance, ageneral two-body Hamiltonian
H, for the nuclear shell model can be decomposed in the following way:

]:12 = Z )‘Q,J(_I)M/AXQJM/_iaJ—Ma (4142)

a,J,M
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where \,, ; isareal constant andthe A, ;»; are one-body operatorsof definitemultipolarity.
Furthermore, (—1)"*M A, ;_»s is the time-reversed operator of A, sy. For every set of
values o.J M we obtain aterm

Hognr = dag(=D)MAwsniAasu
= Ag(=1)7 <AQJM + (—1)J+MAQJ—M)
+ (i Aar = i(=1)"M Ag ) (4.143)
If \o.s(—1)” isnegative, then we can make a decomposition for 1., ; ;s of theform 2.24.
The Hubbard-Stratonovich transfrom 2.30 |eads to a decomposition

f{a,J,M = / G(O‘)GAG,
with
/210 = XaJ [(0-1 + 'iO'Z) /:104JM + (01 - Z.O-Z) (_1)J+M‘4aJ—M] ) (4144)

2

where x.; = /—Xa.s(=1)7. Time-reversed operators couple to complex-conjugated

auxiaiary fields. If we arrange the single-particle states such that the states with J, guan-
tum number m > 0 comefirst and then their time reversed states, the matrix representation
of A, will have astructure
_ ‘410 4420
A, = ( A A ) . (4.145)

Matrices with this structure have some particular properties:
e The product of two such matrices conserves this structure.

e The exponential of such amatrix conserves this structure.

o |f ( llf ) is an eigenvector with eigenvalue e of such a matrix, then ( _uli ) isan
eigenvector with eigenvalue e* of this matrix.

¢ Only half of thematrix hasto be computed explicitely. Thesymmetry of thestructure
4.145 can be exploited to obtain the other half. Because matrix multiplications are
the most time consuming part of SDQMC calculations, this can amost double the
speed of the calculations.

From these properties, and the fact that the matrix representation of a time-reversal
invariant one-body Hamiltonian aso has this structure, it follows that the eigenvalues
of the matrix U, used in the decomposition 4.1 for the Boltmann operator, come in
complex-conjugated pairs. This guarantees the positiveness of the grand canonical trace
of U,.

Tr <Udeﬁ“N) = det(1 + xU,)

Ns/2

= I (14 xe) 1+ xe))
1=1
Ns/2
= H | (1 + xe;) |2 > 0. (4.146)

=1
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The canonical trace is not bound to be positive. However, the close relation between
the grand canonical and the canonical ensemble makes that the average sign will remain
well-behaved in certain cases. For attractive interactions, the grand canonical trace will
be dominated by contributions of states with N, = N_, where N, (N_) denotes the
number of particlesin single-particle states with m > 0 (m < 0). The grand canonical
trace is positive at any vaue of the chemical potential, in other words, at any particle
density. Therefore, the overlap <<I>|Ug|<I>> can be expected to be positive for states ¢
for which N, = N_. These states will also dominate the canonical trace, provided that
N = N, + N_ iseven. Therefore, the average sign is well behaved for the canonical
ensemble with an even number of particles. Also the ground-state projection method will
have no sign problem, provided that the trial state ® in expression 4.121 has N, = N_.
If the operator N, — N_ commutes with the Hamiltonian, then N, — N_ is a good
guantum number. The requirement that ® has a non vanishing overlap with the ground
state implies the supposition that for thetrue ground state N, = N_ holdstoo. Otherwise
the ground-state projection method cannot be applied without sign problems.

In this picture, the basic condition for the sign to be well behaved is the condition

Xas(—1)7 <0, (4.147)

for al {a/} terms in the decomposition 4.142. Examples of such systems are even-
even nuclear systems with a quadrupole-quadrupole or pairing interaction [37]. Also
the absence of sign problems with the attractive Hubbard model discussed above can be
understood in this way.

The decompositions of e~##2 based on rank-one and rank-two operators of the form 2.81
or 2.89 will aso lead to matrices of the form 4.145, provided that =, = y, and that the
operators by, and b,, and the operators b3, and b,, arerelated by a structure

bi, = (clcr 020),

{ by = (=c, <), (4.148)
bz, = (C3a c40)a

{ b = (—czg o ) (4.149)

The pairing interaction for nuclear systems (see chapter 6) and the attractive Hubbard
model are examples of systems that can be decomposed in such away. Therefore these
systems can be studied without sign problems, using SDQMC based on a decomposition
of theform 2.81 or 2.89, for even numbers of particles.

45.4 Practical solutionsto the sign problem ?
To circumvent the sign problem, Sorella et al. [43, 44] have proposed to ignore the sign

and to use |w (o )| instead of w (o). Thisamountsto using E,,( f) as an estimate for E( ).
From expression 4.129 it is clear that this approach isonly valid if

Bt (f)Ejwi(s) = Epw([fs), (4.150)
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Figure4.1: Internal neutron energy for a 51Fes; systemwith a mean field and pairinginteraction,
obtained using a SDQMC method for the 11 neutronsin the fp shell. Correct results and results
obtained by neglecting the sign of the weights w(o ). are shown.

i.e. if f and s areuncorrelated. While thismay hold approximately in some cases, as was
observed by Sorella et al. [43, 44], it certainly does not hold generally. Therefore, this
approach does not solve the sign problem. Furthermore, even if relation 4.150 holds, the
method does not alow to check this relation. In the picture of Fahy and Haymann (see
section 4.5.2) the method amountsto replacing f~ by f+ [42].

We calculated the internal neutron energy for a 3iFes; system, with a mean field and
pairing interaction (see chapter 6) using a SDQMC method for the 11 neutrons in the
fp shell. Figure 4.1 shows the internal energy obtained from expression 4.132 and the
internal energy obtained by ignoring the sign of w(o). For inverse temperatures 3 higher
than 1.5MeV ™", the method suggested by Sorellaet al. clearly givesincorrect results.

A different solution for the sign problem was proposed by Alhassid et al. [45]. They
suggest to extrapolate results for a series of Hamiltonians with "good’ sign properties to
results for the full Hamiltonian, that can have 'bad’ sign properties. Their approach is
devised for the nuclear shell model, for which the two-body Hamiltonian can be decom-
posed in the form 4.142. As discussed in the previous section, these systems have no
sign problem for even-even particle numbers, provided that the coefficients A, ;(—1)” are
negative. In general, some of the \,;(—1)” will be positive. The {a.J} termsfor which
Mg (—1)7 ispositive, constitute the'bad’ part of the Hamiltonian.

A

H = Hgoa + Hyaa, (4.151)
f{good = IA{I‘I’ Z /\a,J(_l)MAaJMAaJ_M, (4152)
o, JJ, M

Aas(=1)7<0
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A

Hba.d = Z /\QJ(—l)MAaJMAaJ_M. (4153)
o, J, M
Aas(=1)7>0

A new Hamiltonian is constructed as
Erg = f{good + gﬁbad- (4.154)

For ¢ < 0 thisHamiltonianisfreeof sign problems (for even-even systems). Then, results
are calculated for a system with Hamiltonian Iifg at severa values of ¢ between —1 and
0. These results are then extrapolated to results for Hg with ¢ = 1, the full Hamiltonian.
Though for some systems [6] this approach gives good agreement with results obtained
using diagonalization techniques, one should be cautious with it. In general, it can be
expected that the relation between the bad part of the Hamiltonian and values for the
observables will be highly non-linear. To validate the method, it would be interesting to
compare results for 7,—_, with resultsfor f,_; = H at values of 3 where the average
sign is large enough to allow accurate calculations for both Hamiltonians. As far as we
know, results of such a comparision have not been published yet.

The approach of Alhassid et al. can be applied to the Hubbard model too (see chapter
5). For the repulsive Hubbard model, the ‘bad’ part of the Hamiltonian is the complete
two-body part of the Hamiltonian. By multiplying this part with a negative value ¢, the
Hamiltonian is transformed into the Hamiltonian of the attractive Hubbard model, that
has good sign properties, as discussed in the previous section. At haf filling, both the
attractive and the repulsive Hubbard model have good sign problems, so the validity of
the ¢ extrapolation can be verified. We calculated the ground-state energy for several
values of two-body interaction strength U/, ranging from U = —8|t| to U = 8|t|. A
second-order polynomial in U/ was fitted to the results for /' < 0. An excellent fit was
obtained. This polynomial was used to extrapolate the ground-state energy to positive
valuesof U. It can be seen from figure 4.2 that the extrapol ated values differ strongly from
thetruevalues. Now the energy isthe observable most directly related to the Hamiltonian.
Therefore, for other observabl esthe deviations can be expected to be even bigger. Clearly,
for the Hubbard model the g-extrapolation does not work. For other systems, where only
a fraction of the Hamiltonian is 'bad’, the method might do better. To our opinion, the
method ought to be checked case by case, by looking at the validity of the g-extrapolation
at low values of 3, beforeit is used to study observables at large values of .

It seems to us that, for a general interaction, sign problems cannot be avoided. The
freedom in the decomposition of the Hamiltonian (see sections 2.2.1 and 2.2.2) might
allow for adecomposition with which the average sign becomestoo small only at very low
temperatures. If the system isalmost completely cooled to itsground state at temperatures
for which the average sign s is ill large enough, (practically, s > 0.1), the relevant
physics of the system can be studied with not too bad statistics. As stated before, the
SDQMC would be free of sign problems if the operators S, (3) were Hermitian. The
freedom in the decomposition of the Hamiltonian can be used to make the operators
A in expression 4.1 Hermitian for each inverse-temperature slice. This does not make
S,(3) Hermitian, but it ensures that the non-Hermitian components in 5, (3) are given
by commutators of the operators A, so that the Hermitian part will dominate 51,(,3). In
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Figure4.2: Extrapolation of the ground-state energy of the half-filled 4 x 4 Hubbard model from
negative to positive values of the interaction strength U .

this way, calculations might be possible at low values of 3. These results could then
be extrapolated to higher values of 5 (lower temperatures). This extrapolation seems, to
us, more reliable than the g-extrapolation discussed above. A consistent extrapolation
scheme, probably hasto be based on an inverse-Laplace transform and maximum entropy
techniques. The development of such a scheme could be atopic for future research.

4.6 Practical considerations

4.6.1 Stabilization at low temper atures.

At low temperatures, SDQMC tends to become unstable. This is caused by the fact
that the matrices U, tend to become nearly singular for large 5. The columns of U,
become similar to one another. This means that the particles al tend to occupy the
same single-particle state. If the system would be bosonic, this could be understood as a
Bose condensation in one single-particle state. However, the Pauli principle blocks this.
Fermionic systems are described by the linearly-independent components of the columns
of U,. If the columns of U, are nearly linearly dependent, the linearly-independent
compononents can become intractable due to the limited computer precision. Thisleads
to afirst practical consideration: SDQMC computer programs should always use double-
precision variables. But thisisnot enough. To stabilize the SDQMC at |ow temperatures,
the linearly-dependent components of the columnsof U, have to be projected out. Severa
approaches have been suggested for this.
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A first approach [6] is based on the singular value decomposition. The singular value
decomposition (SVD) of amatrix U is adecomposition of the form

U =QDR", (4.155)

where D isadiagona matrix and () and R are orthogona matrices [11]. Because of its
orthogonality, the matrix () accurately represents the linearly-independent components of
the columns of I/. For the application in SDQMC, we need a way to obtain an accurate
representation of the SVD of the matrix U/, The matrix U, is build up as a product of
matrices

U, =U

G'NS

U Uy, (4.156)

where the matrix U, representsthe j t* inverse-temperature sice in the decomposition of
the Boltzmann operator 4.1. Let the matrix 7', be the product

T,=U, Uy, ..Uy U,,. (4.157)

Suppose that we have aSVvD for 7,
T, =Q.D,RE. (4.158)
Then the SVD for 7),,.; can be computed accurately in the following way:
Ty = Uppy T = Usp, QuDnR]

Ont1tm

= (UspsQuDy) BT (4.159)
The matricesU,, ., and (,, are well conditioned so they can be multiplied without loss of
significant information. The multiplication with the diagonal matrix D,,, whose diagonal
elements can be huge, scales the columns but does not mix them up, so the information
on the linearly-independent components of the columns of 7,,; remainsintact. For this
product U, ..Q,D, anew SVD can be computed,

n+1

UCTn-H QTLDn = Qn-l—an-}—lRT- (4160)

All we have to further do to obtain the SVD 7,41 = Q1 Dny1 RL,,, isto multiply the
two orthogona matrices R,, and R,

Rps1 = R.R. (4.161)

After N, steps, the SVD for U, isobtained. It can then be used to calcul ate accurately the
grand canonical and canonical trace (see algorithm 4.97). We presented this method as
if a SV D should be computed after every inverse-temperature dice. Thiswas merely for
ease of notation. In practice, anumber of inverse temperature slices can be taken together
when multiplying 4.159.

A second approach [35] is based on the QR decomposition [11]. The QR decomposition
of amatrix U isadecomposition of theform U = () R, where () is an orthogona matrix
and R an upper triangular matrix. Just asfor the SV D-based method, the discussion can be
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based on the matrix product 7', expression 4.157. The linearly-independent components
of the matrices 7', are now obtained from a QR-like decomposition,

where D isadiagona matrix, () an orthogonal matrix and R an upper triangular matrix
whose diagonal elements are all equal to 1. The reasoning is completely analogous as
above, except that a QR-likedecomposition 4.162 instead of aSV D hasto be computed for
Us,.1 @nDy This can be done using a Gram-Schmidt orthogonalization procedure [11].
As such, this method amounts to a reorthogonalization of the single-particle states after
every (or every few) inverse temperature dice(s). Advantages of this approach compared
to the SVD-based approach are

¢ A QR-likedecomposition is computed much faster than a SVD. The Gram-Schmidt
procedurerequiresapproximately 2 N3 flops, whereasaSV D requiresapproximately
21 N2 flops[11].

e A QR-like decomposition can easily be adapted to matrix structures of the type
4.145, such that only half of the matrix needs to be orthogonalized.

¢ A QR-like decomposition is easy to program.
An advantage of the SV D-based approach is

e WithaSVD, thematrices R,, are awayswell conditioned. Thisisnot assured with
a QR-like decomposition. In practice, we never experienced such problems with
the QR-like decomposition.

For our calculations, if stabilization was necessary, we always used the QR-like decom-
position. The orthogonalization was done after every m** inverse-temperature sice, with
m such that m3/N, ~ 1 for the Hubbard model (see chapter 5), or m3/N; ~ 2 for the
nuclear pairing model (see chapter 6). Using this technique, the SDQMC became very
stable. By storing the logarithmsinstead of the actual values of the diagonal elements of
the matrices D,,, the trace of [/, could be calculated at any value of 3.

4.6.2 Effictent MCMC sampling - Hybrid samplers.

In section 3.4.1 it was aready mentioned that the proposition kernel for Metropolis
sampling should be devised in such a way that about 25% of the trial moves is accepted.
For SDQMC, this can be arranged in several ways. Let the configuration be given by
avector o = (01, 02,...,0n,), With one component for each inverse-temperature slice.
Each of these components o; will have a number of subcomponents o ;; related to the
decomposition of e~BH: (see section 2.2). In the paper [37], it was suggested to update
the componsents o; consecutively. For each component ; , a fixed number (say n;.) of
subcomponents o ;; is changed to generate atrial move for the Metropolisalgorithm. Note
that N, has to be odd. Otherwise the Markov chain is not irreducible: the chain will
never go from aninitia configuration o to aconfiguration o’ that differsfrom ¢ in an odd
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number of subcomponents o;;. The number n,. is choosen such that about half of the
trial moves is accepted (as said before, a somewhat lower acceptance rate might be more
appropriate). Thisway of generating trial movesis suited for sampling schemes based on
rank-one updates, as discussed in 4.2.1. If the whole matrix U, is recalculated for every
configuration o’, thisway of generating trial moves can beimproved in afew ways.

e Choosen . randomly between 1 and amaximumvalue N,. at each Markov step. NV,
can be somewhat larger than thefixed valuefor n ;. mentioned above. Thisprocedure
will lead to approximately the same acceptance rate for the Markov chain, but it
connects a configuration o to much more trial configurations ¢’. Therefore the
underlying transition kernel of the Markov chain will connect more configurations.
As discussed in section 3.2.6, this leads to shorter autocorrelations and a faster
convergence.

e If U, isrecaculated completely for every trial configuration o, it is advantageousto
pick the n,. subcomponents not from one inverse-temperature sice, but randomly
from all subcomponentsof o. Again, the underlying transition kernel of the Markov
chain will connect more configurations.

As discussed in section 2.1, the Boltzmann operator e~PH has to be cut in N, inverse-

temperatureslicese % in order toavoid errorsinits decomposition originating from the
non-commutativity of parts of the Hamiltonian /. To get agood accuracy with SDQMC,
N; sometimes has to be quite large, of the order of afew hundred. In such cases, alot
of matrix multiplications are needed to build up the matrix U, for just one configuration
o. Because matrix multiplications require O (N2) flops, this will be the bottleneck of
the SDQMC calculation. Recalculating U, completely for every tria configuration o is
then not very efficient. The Markov-chain Monte-Carlo sampling scheme can be arranged
in such a way that only a fraction of the matrix multiplications has to be repeated for
the evaluation of a new configuration ¢’. This can lead to a considerable reduction in
computation time.

The NV, inverse-temperature slices are split into two parts, the first V,; dices versus the
last Ny; = N; — Ny dices. The matrix U, is computed in two steps. Using the notation
4.157, the matrix T,, is caculated first. It is stored in the computer memory. Then
it is multiplied with the last N;, dices to obtain /,. Trial moves for the Metropolis
sampling are generated by changing only the last V;; components of o. In other words,
only the last NV, dices are changed. T, remains unatered. Therefore, the first Ny
matrix multiplications have not to be repeated for the evaluation of o’. This saves alot
of computer time. Of course, one should change the other components of o too in order
to get an irreducible Markov chain. Therefore, after a number of Markov steps (say NV.)
where only the last V;; components were changed, the components are shifted cyclically
over anumber of dices(say Nqnir;). Because of the permutational symmetry of the (grand)
canonical trace, the next N. Markov steps amount to a sampling of V;; other components
of o. After such ashift, T'y,, hasto be recalculated. However, because this happens only
every N. Markov steps, this has no big effect on the needed amount of computer time.
What numbers should be taken for N;,, N. and N ?
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e If Ny istoo large, then too many matrix multiplications will still have to be done
to obtain the I/, and the calculation will be dow. If N,, istoo small, the Markov
chain staystoo long in the same region of the configuration space (thefirst N;; dices
remain the same) and the autocorrelationswill belong. No genera rulefor N,, can
be given. For most applications, we obtained good resultswhen V,, was taken such
that the amount of computer time needed for the V;; matrix multiplicationsto build
U, from Ty, wasof the same order as the amount of computer time needed for the
evaluation of the trace of /..

e If N.istoo small, then the computation of 7'y,, will dominate the calculation, so it
will bedow. If V. istoolong, the Markov chain staystoo long in the same region of
the configuration space (thefirst V;; remain the same) and the autocorrel ationswill
be long. No general rule for V. can be given. For most applications we obtained
good results with N. such that the amount of computer time needed for the V.
Markov steps was somewhat larger than the amount of computer time needed to
compute T'y,,

¢ Inspired by the Gibbs sampler (see section 3.4.2), one could suggest to cut the N,
inverse-temperature dices in N,/N. parts of equal length and to shift after every
N. Markov steps a new part to last N, positions. This amounts to taking N
amultiple of N;/N, (provided that N,/N. is an integer number). Taking Ngpire =
N;/N. leads to a deterministic-scan Gibbs sampler. Taking Nguire = mN;/N.
with m arandom integer number between 1 and N, leads to a random-scan Gibbs
sampler. However, shorter autocorrelations are observed when Ny iS drawn
randomly between 1 and V;. Thiscan be understood from thefact that the transition
kernel for such a sampling scheme couples a configuration o to much more other
configurations o’. As explained in section 3.2.6, this leads to a faster convergence
and shorter autocorrelations for the Markov chain.

The N. local updates (local, because only the IV, last dices are updated) and the shift of
o over Nguee can be taken together and considered as one transition kernel for a hybrid
Markov-chain Monte-Carlo method, as described in section 3.4.






Applications

Overview

SDQMC results for the 4 x 4 Hubbard model are presented in chapter 5. Special
attention is given to a comparision between results obtained in the canonical and the
grand canonica ensemble. SDQMC calculationsfor the nuclear pairing Hamiltonian
are discussed in chapter 6. Results were obtained for a model with pairing in a
degenerate shell and for a mean-field plus pairing model for nuclel in the Fe region.

An outlook for SDQMC cal culations of neutrino-nucleus scattering cross-sectionsis
given in chapter 7.






The Hubbard model

For this work, we studied the two-dimensional Hubbard model mainly because it is a
good test case for quantum Monte-Carlo methods. It has been studied extensively using
SDQMC in the grand canonical ensemble and with ground-state projection[7, 14, 35], as
well as using other quantum Monte-Carlo techniques (e.g. Green-function Monte-Carlo,
worldlineMonte-Carlo[7]). Our aim wasto develop SDQM C algorithmsfor the canonical
ensemble, with the application to atomic nuclei as the final goal. Therefore we did not
systematically study the physical properties of the Hubbard model, nor did we calculate
magnetic susceptibilities, spin-spin correlation functions, etc. However, we calcul ated
thermodynamical quantities such as the internal energy and the specific heat. Our results
are the first ones for the Hubbard model obtained within the canonical ensemble (with
fixed numbers of spin-up and spin-down particles).

5.1 TheHubbard Hamiltonian

To introduce the Hubbard model, we follow Yosida[47]. When atoms are put together in
acrysta lattice, the influence of the neighbouring atoms is felt by the valence electrons
of the atoms in the lattice. The orbitals of the outermost valence electrons, which are
responsible for the cohesive energy of the crystal, are modified compared to the orbitals
in free atoms. In metal s these electrons can move in the crystal. They become conduction
electrons which are described by the Bloch function.

Let us represent the electron orbitals in the incompletely filled shell of the ions in the
crystal lattice (3d orbitalsin iron-group elementsor 4 f orbitalsin rare-earth el ements) by
anondegenerate localized orbital ¢;(r), where the index j indicates a site on the lattice.
The Hamiltonian that describes the interactions of the valence electrons can be expressed
as

H = Ztij (642'&” + &L&ij) + UZ &}ri&uflbflu- (5.1)
1,7 7
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This Hamiltonian is caled the 'Hubbard Hamiltonian’. The operator a}; (al,) creates
an electron with spin up (spin down) in the localized orbital ¢;(r) on lattice site 7. If
these localized orbitals are mutually orthogonal, the above operators and their Hermitian
conjugates fulfill the well-known commutation relations for fermion operators. If the
localized orbitals are not mutually orthogonal, the ¢;(r) should be interpreted as Wannier
functions, which are orthogonalized linear combinations of Bloch functions. We restrict
the model to a single conduction band, i.e. we assume that there are only two orbitals per
lattice site: one spin-up and one spin-down orbital.

Thefirst term in 5.1 represents the "hopping’ of electrons throughout the lattice.

=3t (s + alay). (5.2)
2,7

This term transfers electrons from site : to site j with a strength ¢;;. For numerical
calculations one assumes afinite, periodic lattice. Because of the periodicity of the ¢;;,
H, can be diagonalized by a Fourier transformation. If we indicate the sites on the lattice
with a vector notation, e.g. for atwo-dimensional L x L square lattice j = (51, j2), then
we can define the operators

éT — % E ei%(nljl-l-nzjé)&f (53)

sn 879

n=(n1,n2)
wheretheindex s denotes the spin (1 or }). Thekinetic term f1; is then given by
H =Y e &t ey, (5.4)

with e,, the single-particleenergy related to astate ¢! |). For simplicity it is often assumed
that ¢;; isegual to aconstant valuet for sites: and j next to one another, and zero otherwise.
The term then expresses ' nearest neighbour hopping’. If oneretainst;; only for sites: and
J close to one another, and puts ¢;; = 0 otherwise, one assumes a 'tight binding limit’.
This limit isjustified by the fact that the orbitals ¢; and ¢; will have an extremely small
overlap for sites 7 and ; that are not close to one another on the lattice [48]. For our
calculations, we limited the ¢;; to 'nearest neighbour hopping’ only. The single-particle
energies are then given by

27 27
€, = 2t [cos <N n1> + cos <Wn2>] . (5.5)

The second term in the Hamiltonian 5.1 describes the Coulomb repulsion between two
electrons on the same lattice site. Note that the Pauli principle forces two electrons in
the same orbital to have opposite spins. Electrons in two different orbitals will interact
electromagnetically too, but these interactions are neglected. For some systems this
omission is justified by the screening of the interactions between electrons on different
sites and by the small overlap between the Wannier orbitals[48].

The restriction to a single conduction band, nearest-neighbour hopping and on-site re-
pulsion only, leads to the "'minimal Hubbard model’. The Hamiltonian is then given

by

H=1t > (&L&T]‘ + &L&ij) + U fhginyi, (5.6)
(6.1) i



5.1 The Hubbard Hamiltonian 117

wherethenotation (z, ;) indicatesthat the summation for the one-body part runsover pairs
of neighbouring sites, and

ny = (AIJTFZ(AITZ (57)
o= alap (5.8)

According to the dimensionalty of the underlying lattice, the model is called the one-,
two- ,three- or even infinite-dimensional Hubbard model. Though the Hamiltonian looks
very smple, it aready leads to a complicated many-body problem. Because the one-
and two-body terms do not commute, the system will have a highly correlated ground
state. The many-body problem for the one-dimensional Hubbard model can be solved
exactly using the so called 'Bethe Ansatz’ [47]. While the one- and infinitely dimen-
siona models are more of theoretical interest, the two- and three-dimensional models are
related to interesting physical systems. Over recent years, the two-dimensional model
has drawn considerable attention in connection to high-temperature superconductivity.
The electronic properties of high-temperature superconductors are believed to originate
from electrons moving in planes of cupper and oxygen ions, isolated by layers of non-
conductingions. It wassuggested by Anderson [49] that el ectron correl ationsdescribed by
the Hubbard model might give aqualitative pictureof high-temperature superconductivity.
Up to now, calculations have failed to give conclusive evidence for this conjecture.

So far, we assumed that the two-body interaction strength U in 5.1 was positive, i.e. that
the interaction was repulsive. Thisisobviousif the two-body term describes a Coulomb
repulsion. However, couplings to lattice deformations (phonons) or other collective
degrees of freedom, can lead to short-range attractive correlations between electrons.
Thisisredlized in an effective way in the attractive Hubbard model. It has been studied
in connection to superconductivity, because, by design, it yields superconductivity in its
ground state [7].

An interesting symmetry exists between the repulsive and the attractive Hubbard model.
The asymmetric particle-hol e transformation

(ALTZ' — (—1)i1+i2&ﬁ, (59)
ap — (=1)nteal, (5.10)
with ¢; and 7 indicating the lattice’ position’ « = (i1, ¢2), transformsthe Hamiltonian 5.6
to
=ty (ala; +alay,) - U > ity + UN, (5.12)
(4,3) :

wherez\ﬂ = 3_; ny; iISthenumber operator for the spin-up particles. Therepulsive Hubbard
model for N spin-up and N, spin-down particlesistransformed into an attractive Hubabrd
model for N; spin-up and Ns — N spin-down particles, with Ng the number of lattice
sites (because of the symmetry between spin-up and spin-down states, we define Ng
here such that it equals half the number of single-particle states). Therefore, the energy
of a repulsive Hubbard model with intercation strength &/ and with N spin-up and V|
spin-down electronsis equal to U Ny plusthe energy of an attractive Hubbard model with
intercation strength —U and with Ny spin-up and Ns — N spin-down electrons. This
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property can be extended to any lattice that has two types of sites, say A and B, such that
the electrons hop from A sitesto B sitesand from B sitesto A sites, but never from A to
A dsitesnor from B to B sites. Such lattices are called " bipartite’ |attices.

Applying this relation twice, once with atransformation of the spin-up particles and once
with a transformation of the spin-down particles, leads to a relation between the energy
Ey, n, of arepulsive (Ny, N|) system and the energy Eyg_n, ns—n, Of a repulsive
(Ns — Ny, Ns — N|) system:

ENS_NT7NS_Nl = ENTle +U (IVS — NT — Nl) . (512)

Because we used the Hubbard model mainly as a benchmark for testing SDQMC al-
gorithms and because of limitations in computer power, we restricted our calculations
to small lattices. Most calculations were done with a periodic, two-dimensional square
lattice of 4 x 4 sites. This leads to 32 single-particle states, and matrices of dimension
Ns = 16. To reduce the influence of finite-size effects, which is necessary to make
contact with real physical systems, larger lattice sizes are needed, with 10 x 10 Sites or
more. Parametrizations used to describe real crystals, have values for ¢ of the order of
1leV and valuesfor UU of the order of 1 to 10eV [50]. In the rest of this chapter, we work
in appropriate energy unitssuch that ¢ = 1.

5.2 Decompositionsfor SDQMC

As discussed in chapter 2, several ways of decomposing the Boltzmann operator e ~#H
for application in SDQMC calculations exist. For the Hubbard model, we tried severa
expansions.

First of al, there is Hirsch’s discrete Hubbard- Stratonovich decomposition discussed in
section 2.2.2. The one- and two-body part of the Hamiltonian are separated using the
Suzuki-Trotter formula2.12. The decomposition 2.72 for the two-body interaction leads
to diagonal matrices, that can be multiplied quickly (2N 2 flops per matrix multiplication).
The matrix representation of the operator e~PH1 |eads to a dense matrix. The specific
eigenstructure 5.3 however, allowsfast multiplicationswith thismatrix using afast Fourier
transform. Thisrequires6 , log( Ns) N2 flops per matrix multiplication [12], which isfast
compared to the N2 flops needed for a general matrix multiplication For small lattice
dimensions this number of flops can be optimized even further; for a4 x 4 latticeto 6 N 2
flops, for a8 x 8 latticeto 11.V2 flops. Another approach for the matrix e~## isto use
the series expansion

H 32 2 33 3 84 4
e Pl =1 — gH, + T H+ o HY + o H (5.13)
Because of the sparse structure of the matrix H;, the matrix multiplications with H; can
be performed quickly. The expansion should at |east be of fourth order, in order to make
the error small compared to the error originating from the Suzuki-Trotter breakup 2.12.
This approach requires 20 N flops per matrix multiplication, so it is advantageous only
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for large lattices. It has the disadvantage that it is not a completely exact representation
of e~

To improve the speed of the matrix multiplications for the one-body part even more, a
somewhat different decomposition was used. It is based on the operators H7;) defined by

] = tz ( TzaT] + alzalj> + UnTznlza (514)

where the summation over j runs over neighbouringh sites of site : only. Obviously,
H= > H[Z The operatorsH[Z have the particular property that

A A

| Hyg. Hyy| =0, (5.15)

if (i, +4,) and (j; + j;) are both even or both odd. We split 77 intwo parts, H = H, + H.,
with

H, = Y. Hpy, (5.16)
’i, (21 +220dd)

a = Y oy (5.17)
2, (i1+42€ven)

The Boltzman operator ¢ ~*(=*H:) jsgplit into factorse=#H> and e~#H- using the Suzuki-
Trotter formula 2.12. Because of the commutation relation 5.15, each of these factors
can be split into single factors e ~#711 without approximations. The operators e ~#711 are
rank-two operators (see section 2.2.2). They can be approximated with errors of order 32
using 2 terms of the form 2.53. An exact representation can be obtained using 3 terms,
but we used only theformwith 2 terms. The error of the decomposition of the Boltzmann
operator isnow related to the commutatorsbetween £/, and A, , instead of the commutators
between H; and H,. The error is comparable in both cases. The big advantage of this
decomposition is that the matrix multiplications for one inverse-temperature sice now
require only 6 N2 flops in total, one-body and two-body interaction included, for any
|attice size. Furthermore, we found that this H,- £, decomposition needed considerably
less inverse temperature dices to converge than the first decomposition.

A third decomposition that we used, isbased on a Suzuki-Trotter separation of theone- and
two-body partsof the Hamiltonian, just likethefirst method. The two-body part ishandled
using a decomposition of the form 2.94. The second-order expansion 2.97 was used, but
it required too many inverse temperature sices to converge (of the order of NV, = 1000 for
a4 x 4 syssem with U = 4, # = 8.) The fourth-order expansion 2.99 converged faster.
The use of these decompositions was motivated by the fact that the matrices involved
in the decomposition of the two-body interaction had very few non-zero elements, so
that matrix multiplications could be performed extremely fast. A second reason was that
these decompositions|ead to configuration spaces of smaller dimensionsthan the first two
decompositions. Therefore, the MCM C sampling could be expected to convergefaster and
to have shorter autocorrelations. However, because alarge number of inverse temperature
dices were needed compared to the first two methods, the advantages were cancelled.
Furthermore, it was difficult to set up the Markov chain such that reasonable acceptance
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rates were obtained: the weight distribution of the configurations was not smooth enough
to allow an efficient generation of trial moves.

The results presented in the next section were all obtained using the first or the second
decomposition.

A way to improve the MCMC sampling is obtained using guided sampling (see section
3.4.5). By neglecting the one-body part of the Hamiltonian, the matrices representing the
terms U, inthe decomposition 4.1 for the Boltzmann operator all become diagonal. Their
N-body trace can be evaluated quickly, in O( N Ns) operations. Therefore, their weight
isuseful as aguiding weight for the sampling of the exact terms. Especially at low values
for 4 (< 2/|t]) and at strong interaction strengths (U7 ~ 8), the efficiency of the Markov
chain is considerably improved.

5.3 Thermodynamic properties of the 4 x 4 Hubbard
model

All results presented in this section pertain to a minimal, repulsive Hubbard model on a
periodic 4 lattice, in the canonical ensemble. We did afew calculationsfor larger lattices
too, (6 x 6 and 8 x 8). They required much more computation time and therefore we did
not perform systematic studies of the influence of the temperature, the number of particles
nor the interaction strength on the thermodynamic properties of such large systems.

All calculations were done for a fixed number of spin-up particles (V) and spin-down
particles (V). This puts afurther restriction on the canonical ensemble, which normally
contains al stateswith Ny + N; = N. To obtain the full canonical ensemble, one should
add up theresultsfor al particle numbers Ny and V| that satisfy Ny + N; = N. Thiscan
easily be done by adding onelineto the algorithm 4.97. Because our aim was not to obtain
a complete description of the Hubbard model, but to develop a SDQMC algorithm, we
did not make this summation. Calculations for a fixed set of particle numbers (N, N|),
have the advantage that the ground state is reached at |ower temperatures of 3, while the
algorithm 4.97 still allowsto takeinto account the full complexity of the ground state. To
indicate a system with N, spin-up and N, spin-down particles we the notion ' (N, N|)
filling’ isused.

In order to avoid confusion, the symbol £ in this chapter is used for the internal energy
of the system, while the symbol U/ isreserved for theinteraction strength parameter in the
Hamiltonian 5.6. All error limits indicate 95%-confidence intervals. The error bars were
omitted if they were smaller than the markers of the data points. Thelinesin the plotsare
ment to guide the eye, they are no fits nor theoretical predictions.

For aclear interpretation of theresults, itisinteresting to take acloser look at the spectrum
of the one-body part of the Hamiltonian, i.e. the Hubbard model for /' = 0. The single-
particle energies are given by expression 5.5. A schematic picture of this spectrum for the
4 x 4 latticeisgiveninfigure5.1. Configurationswith 5 spin-up or 5 spin-down electrons
correspond to closed shells. The (5 1 5 | ) system has aground state energy of —24.



5.3 Thermodynamic properties of the4 x 4 Hubbard model 121

Figure5.1: Sngle-particlespectrumof the4 x 4 Hubbard model at U = 0.

53.1 Resultsat (717 ) filling.

Toillustrate how thermodynamical quantitiescan be cal culated using SDQMC calculations
for the Hubbard model, we discussthecalculationsat (7 1 7 ) fillingin some more detail .
A first issue, is to fix the number of inverse temperature intervals, N;. A number of
SDQMC runs were done with different values for ;. Using Hirsch’'s discrete Hubbard-
Stratonovich transform 2.72, a good convergence of the results was obtained at N, = 2043
for an interaction strength of /' = 4, while at interaction strength /' = 8, we had to take
N; = 403. Thuswetook N, = 53U. We observed that |ess inverse temperature dices are
needed to obtain convergence with the fast decomposition discussed in 5.2. However, for
consistency, we took N, = 53U for these calculations too.

The sign problem (see section 4.5) spoiled the calculations above a certain value for 3.
Figure 5.2 shows the evolution of the average sign as a function of 5. The average sign
5 decreases faster for /' = 8 than for /' = 4. Asdiscussed in section 4.5.4, 5 isrelated
to the non-Hermitian part of the operators .S, that show up in the decomposition of the
Boltzmann operator 4.1. For the Hubbard model, these terms originate mainly from the
non-commutativity of the one-body Hamiltonian H, with the operators n,; used in the
discrete Hubbard-Stratonovich transform 2.72. Formally, the operator 3 Ht,U isequivalent
with the operator (263) H, /2,72 A system with Hamiltonian H, /, ¢y will lead to alarger
average sign s at any value of 3 than a system with Hamiltonian Hw. Therefore, for
t = 1, the average sign at an inverse temperature 3 for U = 8 will be smaller than the
average sign at inverse temperature 3 for U = 4, but at least as large as the average sign
at inverse temperature 23 for /' = 4. Thiscan be seeninfigure 5.2.

Asdiscussed in section 4.5.1, the errors on the Monte-Carlo results are inversely propor-
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Figure5.2: Averagesign s asa function of theinversetemperature 5 for the4 x 4 Hubbard model
at (71 7])filling,for U = 4 and U = 8. The dotted curve shows the average sign for the system
with U = 4 at inverse temperature 23.

tional to 5. Figure5.3 illustratesthisfor the errorson the internal energy ¥ and on C/32.
(Theerror on C'/ 3% isplotted instead of the error on the specific heat C', because the | atter
is calculated by multiplying (%) — ()2 with 32, see expression 4.113). Though the
error depends on anumber of factors(length of the Markov chain, autocorrelations), figure
5.3 clearly shows that for small s, the errors diverge like 1/s (thisis the dotted curve in
figure 5.3).

Results for the internal energy £ and the specific heat C' are shown in figure 5.4. At
high values of 3, the internal energy £ could be calculated much more accurately than
the specific heat . One reason for thisis the factor 3% in expression 4.113. For U = 4
the results for £ became inaccurate around 3 = 12, the results for ' became inaccurate
around 3 = 5. For U = 8 theresults for £ became inaccurate around 3 = 5, the results
for C' became inaccurate around 3 = 3. Peaks in the specific-heat curve generally are
related to changes in the internal structure of the system as the temperature increases or
decreases. A clear peak in the specific heat isasignature of aphase transition. At U = 4,
one peak in the specific heat, around 3 = 1, can be observed, whileat U = 8, it looks
like there could be two peaks, one around 3 ~ 0.5, and maybe one at values of 3 > 2.
This indicates a qudlitative difference between the system for U = 4 and U = 8. Note
that these calcul ations were restricted to fixed values of Ny and N|. So phase transitions
related to a change in particle number or a change in the difference between the number
of spin-up and spin-down particles cannot be observed here. Though 7 is the natural
variable for the computations, a presentation of the results as a function of temperature
is equivalent. Results for the internal energy £ and the specific heat C' as a function of
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Figure5.3: Szeof theerrror limitson theinternal energy F and the quantity C'/ 32 for the 4 x 4
Hubbard model at (7 1 7 |) filling, for U = 8. The dotted curveis1/s

temperature are shown in figure 5.5.

By integrating £ numerically from 3 = 0 to 8 = 1/T, the logarithm of the canonical
partition function Z was obtained as a function of temperature. From relation 4.12, the
entropy .S was obtained. These results are shownin figure 5.6

5.3.2 Resaultsat variousfillings

We performed calculations for the minimal repulsive Hubbard model at various fillings.
Someresultsfor / = 4 areshowninfigures5.7t0 5.12. For the4 x 4 moddl at U = 4, we
observe three types of curves for the specific heat. The (515 1), (516 )and (415 )
systems have a strong peak in the specific heat curve around 5 ~ 2 t02.5. They also have
alow ground state energy. The (5 1 5 |) has no sign problems. Clearly, these properties
arerelated to the closed-shell structureat Ny = 5 or N| = 5 (seefigure5.1). The(8 18 |)
and (7 19 |) systems exhibit anearly flat plateau in the specific heat curvefrom 3 ~ 1 to
B ~ 5. Thisindicates that these systems have a lot of low-lying excited states. Because
of the half filling (V; + N = 16), there are no sign problems for these systems. All the
other systems that we have studied show a maximum of C' ~ 6 around 3 ~ 1 to 1.5.
They cool to their ground states faster than the half-filled or closed-shell systems. This
indicates that the non-half-filled open-shell systems have alarger gap between the ground
state and the first-excited state than the half-filled or closed-shell systems.

We aso notice very little difference between the results for some systems that have the
same total number of particles but a different distribution over spin-up and spin-down
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Figure 5.4: internal energy E (figure a) and the specific heat C' (figure b) as a function of the
inversetemperature 3, for the 4 x 4 Hubbard model at (7 1 7 |) filling,for U = 4and U = 8.
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Figure 5.5: internal energy E (figure a) and the specific heat C' (figure b) as a function of the
temperature 7', for the4 x 4 Hubbardmodel at (7 1 7 ) filling, for U = 4 and U = 8.
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Figure5.6: Logarithmof of the canonical partitionfunction Z and entropy S as a function of the
temperature 7', for the4 x 4 Hubbardmodel at (7 1 7 ) filling,for U = 4 and U = 8.
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states. Thisisthe case for (8 1 8 |) fillingand (7 1 9 |) filling, that have very similar
energies for al values of 3. The same holds for the (7 1 7 ) fillingand (6 1 8 |)
filling, and for the (6 1 6 |) filling and (5 1T 7 ) filling. This means that for these
systems there is actually very little energy needed to flip one spin. It also meansthat in
a complete canonical or grand canonical ensemble, these states will separate only at very
low temperature.

The interna energies thus obtained for various fillings are listed in tables A.1 and A.2.
Ground state energies obtained by diagonalization methods and by SDQM C with ground-
state projection arelisted for comparison (takenfromthereview [ 7] and referencestherein).
We also studied some systems at interaction strength /' = 8. At this strength, also the
(51 5 |) system became sensitive to the sign problem. Theresultsare presentedin figures
5.13t05.16.

The specific heat of the two-dimensional Hubbard model has been studied by Duffy and
Moreo using a SDQMC method in the grand canonical ensemble [52]. They calculated
the internal energy at several temperatures 7', while tuning the chemical potential at each
temperature such that (V) remained constant. The obtained energies were fitted by a
polynomial in 7" of order 4 or 6. The specific heat was then obtained by deriving this
polynomial to 7. Note that the specific heat curveis then given by a polynomial of order
3 or 5. Therefore, this procedure might lead to more pronounced or even artificial peaks
in the specific-heat curve than a procedure based on the evaluation of the specific heat
for each Monte-Carlo sample. Furthermore, it is hard to establish error limits with this
procedure (no error limits are given in reference [52]). Duffy and Moreo find two peaks
in the specific-heat curve for the half-filled 6 x 6 Hubbard model. These peaks are more
pronounced at stronger interaction strengths /. A low temperature peak around 7' = 0.25
is ascribed to the spin degrees of freedom, while ahigh temperature peak around 7" = 1 to
3 isascribed to the charge degrees of freedom. The former degrees of freedom correspond
to fluctuationsin Ny and N, whith fixed N = N; + N|, while the latter correspond to
fluctuationsin N. However, we observe similar features in the specific-heat curve for the
4 x 4 Hubabrd model at (8 1,8 ) filling with U = 8 (see figure 5.16). Because N; and
N, are fixed for this system, this might suggest a different interpretation of the peaks.
Further research is needed to settle this question.

5.4 Some remarks concerning the canonical and grand
canonical ensemble

Using theresultsfor the 4 x 4 Hubbard model at U = 4, we can ssimulate agrand canonical
ensemble. We could calculate the values for the grand canonical ensemble directly using
the SDQM C method discussed in section 4.2. What we want to study here, however, isthe
contribution of each (/N; N, ) system to the grand canonical ensemble in order to compare
the merits of the grand canonical and the canonical SDQMC methods.

The canonical partitionfunctioniscalculated for al fillingsfor which resultsare presented
in tables A.1 and A.2, and for the fillings whose energies can be obtained from these
results using relation 5.12. The values for the partition functions are multiplied with a
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Figure5.7: Internal energy F (figure a), the specific heat C' (figure b) and average sign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (5 1 5 | ) filling, for
U=4.
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Figure5.8: Internal energy F (figure a), the specific heat C' (figure b) and average sign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (6 1 6 |) filling, for
U=4.
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Figure5.9: Internal energy F (figure a), the specific heat C' (figure b) and average sign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (8 1 8 ) filling, for
U=4.
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Figure5.10: Internal energy F (figure a), the specific heat C' (figure b) and averagesign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (5 1 7 |) filling, for
U=4.
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Figure5.11: Internal energy F (figure a), the specific heat C' (figure b) and averagesign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (6 1 8 |) filling, for
U=4.
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Figure5.12: Internal energy F (figure a), the specific heat C' (figure b) and averagesign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (7 1 9 |) filling, for
U=4.
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Figure5.13: Internal energy F (figure a), the specific heat C' (figure b) and averagesign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (4 1 4 |) filling, for
U=28.
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Figure5.14: Internal energy F (figure a), the specific heat C' (figure b) and averagesign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (5 1 5 | ) filling, for
U=28.
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Figure5.15: Internal energy F (figure a), the specific heat C' (figure b) and averagesign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (6 1 6 |) filling, for
U=28.
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Figure5.16: Internal energy F (figure a), the specific heat C' (figure b) and averagesign s (figure
c) asa function of the inverse temperature 3, for the4 x 4 Hubbard model at (8 1 8 ) filling, for
U=28.
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Figure 5.17: The function F' (N, N|) as defined by 5.19 for several values of the chemical
potential i for stateswith particlenumber N = Ny + N|.

factor e=?(N1+N1) to obtain the weight of each system in the grand canonical ensemble.
Not al possible fillings are included, so we only have an approximation for the grand
canonical ensemble. But the included fillings are the ones with the lowest ground-state
energies. Therefore, we obtain a good approximation to the grand canonical ensemble at
lower temperatures. The grand canonical results presented hereafter are all based on this
'smulated’ grand canonica ensemble.

First of al, we consider very low temperatures, i.e. very high values of 5. Contributions
of excited states to the canonical partition fuction can be neglected, so that it is given by

Iy, = e PPo(NeN1) (5.18)

As an estimate for the ground state energy Fo (N, N|) wetook the values for the internal
energy at 3 = 5 aslistedintablesA.1 and A.2. The weight of the (N, N} ) systemin the

grand canonical ensemble is be proportional to the factor e ~#F (VM) with F (N, V)
given by
F(Ny,N|) = Eo (N, N))+ p(Ny+ N)). (5.19)

Thisfunction ' (N, N)) isplotted for several values of the chemical potential . infigure
5.17 At u = 2 thecurveis symmetric around N = 8 and the half filled systems dominate.
This is a consequence of relation 5.12. At x = 0 the (5 1 5 |) system dominates. At
= 1 thecurveisamost flat. At thischemical potential the systemswith N = 5,6, 7 and
8 have ailmost equal weights. This illustrates the point we want to make in this section:
it could happen that the grand canonical ensemble at low temperature is dominated by
systemswith N =5+ 5 or N = 8 4 8, for any value of the chemical potential between
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Figure 5.18: Contribution of systems with various fillings to the grand canonical ensemble as a
function of the chemical potential u, for the4 x 4 Hubbardmodel at U = 4 and g = 5.

@ = 0and p = 2, and that syssemswith N = 6 + 6 or N = 7 + 7 have only very small
contributions. This would happen if the pointsfor N = 6 +6 and N = 7 + 7 would
lie alittle bit below the curve that connects the pointsfor N = 5+ 5and N = 8 + 8.
Our resultsfor the energies at low temperatures are not precise enough to settle this point.
But this raises the question: can informationonthe (6 1 6 |) systemor the (7 1 7 |) be
obtained from grand canonical results ?

Depending on the chemical potential 1, systems with different fillings dominate the grand
canonical ensemble. Thisisillustrated for 3 = 5 in figure 5.18 The contribution of the
N =12 systems (the (6 1 6 |) and (5 1 7 |) systems), ismaximal at ¢ ~ 0.8. But even
then they only contribute 40%. Furthermorethey are always dominated by the (5 1 6 |)
system or the (6 1 7 | ) system. The same holdsfor the (7 1 7 |) systemandthe (6 1 8 |)
system, that are always dominated by the (6 1 7 | ) system or the (7 1 8 | ) system. To see
the evolution of this effect with varying values of 3, the average particle number ( V)¢
is calculated as afunction of the chemical potential x. The result is shown in figure 5.19
for several values of 3. For arange of valuesof 3, the value of y is determined for which
(N isequal to 12 or 14. At these chemical potentials, the contribution of the systems
with variousfillingsis calculated, so that a curve is obtained for these contributions as a
function of 3. These curves are plotted in figure 5.20 for N = 12 and 5.21 for N = 14.
It seems like the canonical systemswith N = 12 (N = 14) will make up at most 50% of
the grand canonical system with (NV)qe = 12 ((N)ge = 14).

At present, the question if the ground state of the repulsive Hubbard model can be
superconductive, is still unanswered and a subject of intensive research [51]. Monte-
Carlo calculations with ground-state projection (see section 4.4) have been performed
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Figure 5.19: Average particle number (V)¢ as a function of the chemical potential y for the
4 x 4 Hubbardmodd at U = 4 and 3 = 5.

Figure 5.20: Contribution of systems with various fillings to the grand canonical ensemble as a
function of the inverse temperature 3, for the4 x 4 Hubbard model at U = 4 and (N)gc=12
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Figure 5.21: Contribution of systems with various fillings to the grand canonical ensemble as a
function of the inverse temperature 3, for the 4 x 4 Hubbard model at U = 4 and (N)go=14

mainly for closed-shell or haf-filled systems, because of the sign problem. However,
as mentioned in the previous section, the systems that are more difficult to study with
this algorithm seem to have qualitatively different properties. A larger gap between the
ground state and the first-excited state might be one of these properties. Asindicated in
this section, also the grand canonical agorithm is limited for the study of these systems.
In order to make the repulsive Hubbard model superconductive, it has been suggested that
one might have to include next-to-nearest-neighbour hopping in the one-body part of the
Hamiltonian. Inclusion of such aterm will leave the wavefunctions of the single-particle
eigenstates unchanged, but it will change their single-particle energies. This can lead to
adifferent shell structure for the one-body part of the Hamiltonian. At strong interaction
strengths U/, the main effect of these shiftsin single-particle energies will be to shift the
ground-state energies of systems with fixed Ny and N|. The correlated structure of the
ground state might remain qualitatively unatered. If al (Ny, N)) fillings are taken into
account (at agiven value for the chemical potential 1), thereisonly one state with definite
filling (N, N}o) that has the lowest energy, the absolute ground state. An absolute
ground state of a Hubbard model with next-to-nearest-neighbour hopping that exhibits
superconductivity, might not be the absolute ground state of the minimal Hubbard model,
but it might still be the ground state for afixed filling (N0, Njo). These arguments all
motivate asystematic study of theminimal Hubbard model using SDQMC in the canonical
ensemble, with fixed (N, V).






The nuclear pairing Hamiltonian

6.1 Thenuclear pairing Hamiltonian and nuclear many-
body theory

The atomic nucleus is a complicated many-body system (with A ~ 20 to 200 particles).
The problem of describing alargenumber of protonsand neutrons, all strongly interacting,
isachallengefor theoretical nuclear physics. Inaway, nuclear theory isthe art of sympli-
fying the many-body problem in such away that accurate predicitions about the properties
of real nuclei can be made, using models that allow precise numerical calculations.

A first, crude approximation to the nuclear many-body problem, isthe use of a mean-field
potential. Instead of describing the interactions between the nucleons in the system, one
introduces a potentia that reflects the average interaction of a nucleon with all other
nucleons. This’mean-field’ potential can then be treated as if it referred to an externd
field. In this way, the many-body problem of N nucleons interacting with one another
isreduced to N one-body problems of a nucleon moving in a mean field. A commonly
used parametrization for this mean field is the Woods-Saxon potential [54]. A mean-
field potential can be derived from effective nucleon-nucleon forces (e.g. forces of the
Skyrme-type [55]) in a self-consistent way using the Hartree-Fock method [53].

In order to improve on the mean field approximation, one has to take into account the
‘residual interactions, i.e. the interactions that are not accounted for within the mean-
field potential. Let H denote the full Hamiltonian of the many-body system and H.,¢
the Hamiltonian of the mean-field potential, then the Hamiltonian .., for the residual
interactionsistrivialy given by

Hieo = H — Hyyg. (6.1)

In practice, one uses eff ective parametrizationsfor the ressdual Hamiltonian H,eo. Among
many others, the Landau-Migdal force is a commonly used parametrization [53]. In
order to obtain an accurate description of the atomic nucleus, one should diagonalize the
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Hamiltonian Ao + Hyes in the space of all many-body states. However, this space is
extremely large. If we would allow each particleto bein any of Ns single-particle states,
the many-body space for N fermions would contain (N ) states. This space becomes
too large to alow an exact diagonalization of the Hamiltonian. Therefore the space has
to be truncated in some way. A truncation with a clear physical motivation, is given by
the nuclear shell model [56]. A core for the atomic nucleus is built by filling the lowest
shells of eigenstates of the mean-field potential. Configurations where the lowest shells
are completely filled constitute *magic’ nuclei. In experiments it is found that nuclei
whose particle numbers correspond to these "magic’ fillings, are strikingly stable and
more strongly bound than others. Non-magic nuclei can be considered to consist of a
"magic’ core plus a few 'valence' nucleons in the lowest open shells of the mean-field
potential. For these valence nucleons, many-body states with definite symmetry properties
areconsidered. Insuchway arestricted many-body space isconstructed, whose dimension
issmall enough to allow diagonalization of the Hamiltonian. Note that the trunctation of
the many-body space has to be taken into account in the effective parametrization of the
residual interaction. For the shell model, this can be done using the Brueckner G-matrix
[53]. For medium heavy to heavy nuclel (A > 50), except for configurations with only
a few valence nucleons, the vaence shells become too large to allow diagonalization.
SDQMC isapromising method to study these systems|[6]: it alowsto study much larger
model spaces than diagonalization methods. Calculations where one considers multiple
shellsfor the valence nucleons or where one considers more nucleons as val ence nucleons
(' no-core’ calculations) could be possible. Thisrequiresthe elimination of spurious states
related to center-of-massmotion, aproblem that isnot yet satisfactory solved for SDQMC.
Apart from a truncation of the model space, one also has to simplify the form of the
interaction in order to make calculations feasible. A simple form that accounts for
the short-range correlations induced by the residua interaction, is the nuclear pairing
Hamiltonian Hp [53], that takes the form

Z Gt Z ak’tak/taktakta (62)

t=p,n k,k'>0

where the operators i!, create a particle in the corresponding single-particle eigenstates
of the mean-field Hamiltonian in the valence shell, and where the index ¢ indicates proton
or neutron states. The notation & indicates the time-reversed state of the state k. In the
so-called 'BCS' phase convention [53], timereversal has a simple form:

[nlymt) = |nlj—mt), (6.3
|nlyj—mt) = —|nljmt). (6.4)

Notethat |kt) = —|kt). The notation k£, &' > 0 in 6.2 indicates that if state & isincluded
in the summation, then % should not be included. A simple way to state this is that the
summation for &£ and &’ should run over states with m > 0 only. The interaction strength
(7; depends on the model space and the system under study. A parametrization suggested
by Bes and Sorensen for an atomic nuleus with A nucleonsis [57]

20MeV
T

G = (6.5)
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A parametrization with different strengths for protons and neutronsis given in [58].

The combination of a mean-field potential and the pairing Hamiltonian leads to a Hamil-
tonian // = H.¢ + Hp. Though this Hamiltonian looks simple, it already leads to a
complicated many-body problem. An often used technique to tackle this problem, is the
Bardeen-Cooper-Shrieffer (BCS) theory [53]. It leads to equations that can be handled
easily in anumerical way and it has a clear interpretation in terms of quasiparticles. The
disadvantage is that it gives only an approximate solution, and that leads to many-body
states with changing numbers of particles. For some systems, exact solutions can be
found (see section 6.2.1 and the paper by Richardson and Sherman [61]). A general, ac-
curate solution for this many-body problem is even at present atopic of intensive research
[59, 60, 63]. We have found that SDQMC is a very useful method for the study of the
ground-state and finite-temperature properties of the nuclear pairing Hamiltonian.

6.2 Some propertiesof thenuclear pairing Hamiltonian

The Hamiltonian we study in this chapter has the form

H=3 Y ew(abantitin) — X G Y alyilanin.  (66)

t=p,n k>0 t=p;n kk'>0

The e, are the single-particle energies of the mean-field potential. From the structure of
the Hamiltonian 6.6 we can make afew observations.

¢ Protons and neutrons decouple. The interactions between protons and neutrons are
only represented by the mean field, there is no proton-neutron term in the residual
interaction. Thisisof courseacrudesimplification of thereal situation, but it allows
us to separate the many-body problem for this model in two smaller ones, one for
protons and one for neutrons. Therefore, in what follows, we will suppress the
index ¢.

e There is a symmetry between states & > 0 and their time-reversed states k. The
number operators N, and N_ for the k > 0 and k < 0 States respectively, both
commute with the Hamiltonian. Hence the number of particles N, in states k > 0
and the number of particles N_ in states £ < 0 are both conserved quantities.

o If astate k isoccupied and its time-reversed state k isnot, then the particlein state k
only feelsthe mean field. It does not interact with the other particlesand it remains
inits state £ . It does have an effect on the other particles in the system because it
blocks both states £ and & for the other particles, due to the Pauli principle.

o If apair of particles occupies a state £ and £, it can be scattered to another pair
of states &’ and £/, but the particles will allways remain ' accompagnied’. Burglin
and Rowley [60] define two particlesto be’accompagnied’ if they occupy apair of
dtates k and k. A particlein a state & whose time-reversed state & is not occupied,
iscaled’unaccompagnied’. This notion should not be confused with the notion of
"paired’ particles: two particlesinasingle j-shell can coupleto astate with angular
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momentum ./ = 0. Insuch astate, these particlesaresaidto be’paired’. Inthetwo-
particle state 5=, !, é—|) the particles are paired, while in the two-particle states

& a—|> for any m, they are accompagnied. Burglin and Rowley also introduce
the operator [60]

V=3 (i + alag) =23 (ahalapin) - (6.7)
k>0 k>0

This operator gives the number of unaccompagnied particles. Though its physical
meaning iscompletely different, we note theformal analogy between the operator v
and the two-body term of the Hubbard Hamiltonian 5.1. The operator V' commutes
with the Hamiltonian. Therefore, the number of unaccompagnied particles is a
conserved quantity. Furthermore, the many-body space can be split up in subspaces,
each having a definite number of accompagnied and unaccompagnied particles.
Burglin and Rowley use this splitting in order to obtain many-body spaces with
small enough dimensions to allow diagonalization techniques such as the Lanczos
algorithm [11] for the study of the lowest eigenstates of the system. Note that the
subspace where al particles are accompagnied, contains only ./, = 0 states. The
V-subspaces are not invariant under rotations.

e Because of the attractive nature of the pairing, the ground state of a system with
an even number of particles (even-even systems if both protons and neutrons are
considered) will belong to the subspace where all particles are accompagnied.

6.2.1 Pairingin adegenerateshell

If al single-particle levels of the many-body system are degenerate, i.e. al ¢, are equal,
then the many-body problem for the Hamiltonian 6.6 can be solved exactly. Without loss
of generality we can assume herethat e, = 0 for al £. Now we consider al possible Slater
determinantsthat can be obtained by placing NV identical particlesinthe Vs single-particle
states. For every pair of states (k, k) there are three possibilities: either none of the states
is occupied, both states are occupied or only one of the states is occupied. In the latter
case, the particlein the state & or & will not interact with the other particles and the Slater
determinant will not couple to Slater determinants for which & and % are both occupied
or both empty. A half-filled couple of states (&, k) is sterile for the rest of the many-body
problem. Therefore, one can reduce the many-body problem of N particlesin the N
single-particle states, from which exactly one occupies a state & or &, to a many-body
problemof N — 1 particlesin Ns — 2 single-particle states (the states & and k are left out).
By repeated application of thisreduction, one comesto amany-body problem of asystem
where all particles are accompagnied.

We discuss thisfor N accompagnied particlesin Ns single-particle states. If all particles
are accompagnied, then one can assign to every state & > 0 aquaspin s):

o s(" = +1if both & and  are occupied,

o s(® = —1if both k and k are empty.
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One can define angular-momentum like operators for this quasispin in the following way
[53] (for k& > 0):

s = alal, (6.8)
W = 4, (6.9)
A Lk, .

3(()’9) — 5(@2%%—@%&;—1). (6.10)

This defines the quasi spin vector §(¥) These operators satisfy the well known commutation
relations for angular-momentum operators:

39,:0] = 23, (6.11)
39,50 = s, (6.12)
30,89 = =5, (6.13)

A set of values for the quasispins s(), s, ... 5%, where @ = Ns/2 is the number of
pairs (k, k), specifies a fully paired Slater determinant. Just like angular momenta, the
guasi spins can be added together to obtain atotal quasispin vector S:

S=Y s". (6.14)

k>0
The component Sy isrelated to the number operator by

g6 =X S & (6.15)

The interesting point about quasispin is that the pairing Hamiltonian 6.2 can be rewritten
as

A A N

Hp = —GS,.5_ (6.16)
= —G(S-8$-51+5). (6.17)

This structure showsthat the eigenstates of the Hamiltonian are given by the eigenstates of
thetotal quasispin S. The eigenstates with definite quasispin quantum numbers S and S
can be constructed from the states with definite s*), k = 1, ..., Q, using the well-known
techniques for angular-momentum coupling [56]. Note that N-particle states must have
So = (N — Q)/2. Therefore the total quasispin for the N-particle eigenstates must be at

least [N — ©|/2. The energy of an N-particle eigenstate with quasispin S is given by
B(S) = —G[S(S+1)— 8+ S| (6.18)
1 . 1
_ —G[S(S-l—l) — (N =P 4 (N -0 (6.19)

The maximum value for S isQ2/2. This value of S gives the ground-state energy. The
vacuum |) corresponds to a state with S = /2, So = /2. The ground states for
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energy level (MeV) || fully accompagnied subspace | complete space
-12 1 1
-6 5 65
-2 9 429
0 5 429

Table 6.1: Comparisionof degeneracies of energy levelsfor the (h11/2)6 configurationin thefully
accompagnied subspace and the compl ete many-body space, (G' = 1MeV).

particle-numbers N = 0,2, ..., 20 form amultiplet for which S = Q/2. Therefore, the
N-particleground state can be constructed by applying the raising operator S, N/2 times
to the vacuum |):

o s \N/2
GSN) = (54) D (6.20)
Thisshowsthat asystem of V particlesinasingle j shell, with NV even, hasaground state

where al particles are paired.
Instead of the quasispin .S one often uses the ’seniority’ quantum number s defined by

s=0-28. (6.21)
It can take on the values s = 0,2,..., min (N, Ns — N). The energy as a function of
seniority is given by

E(N,s) :—%(jV—s)(ZQ—s—N-I-‘Z). (6.22)

The degeneracy d(s) of the states with energy £(N, s) isgiven by [53]

dio) =1 (6.23)
0 Q
d(s) = (3/2) — (5/2 _ 1) for s > 0. (6.24)

Because it is sometimes overlooked [53, 62], we remark here that these degeneracies
only apply to the subspace in which all particles are accompagnied. They sum up to a
total of (},) states. The complete many-body space contains much more states, (%
in total. Taking all these states into account, one finds the same energy levels because
the unaccompagnied particles do not interact and hence do not contribute to the energy.
But the degeneracies change dramatically for the excited levels. Table 6.1 compares the
degeneracies for a system of 6 particles in a shell with 12 single-particle states (eg. a
(h11/2)° configuration) in the fully accompagnied and the complete space.

6.3 Decomposition schemefor SDQMC

Inthis section we present adecomposition scheme for the Boltzmann operator e —AH \ith
H of theform 6.6. As mentioned before, this Hamiltonian does not couple protons with
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neutrons. Therefore, a first and important step for the application of SDQMC to this
system, isto split it in two systems, a proton and a neutron system, such that separate
SDQMC calculations can be performed for each of them. A next step is to split up the
inversetemperature 3 in N, inversetemperatureintervals(see section 2.1). Ineachinverse

: B
temperatureinterval, the operator ¢~ ¥ is split up further as follows:

5 B, BGp LG p 5G p BG f 5 g
e — Tt s P i P L pam Pam1 g P g am
BGp BEPH BGp BEPH __B R
X e2N; ﬂethPﬂ—l oo e2N 202N e 4NtH1’ (6_25)
with
2 ata | oata
H, = Zek (a,cak—l—al—cafC , (6.26)
k>0
- 4 X
P = Z ApiGp, | Ggpag
k>0
& (k)
= S5;877, (6.27)

where we used the notation of the quasi spin operators introduced in the previous section.
BG p ., . .
The ascending-descending ordering of thefactorse 25: 7 in expression 6.25 isnecessary to
3
reduce the error originating from the non-commutativity of the exponents to order (Nﬁt) :
The operators P, have the property that P2 = P,. Therefore, their exponential can be
written as
B8G p 8G. .

e Z 4 <62Nt - 1) . (6.28)
This form allows an exact decomposition using rank-two operators of the type discussed
in section 2.2.2.

1

F = S (i) (il
k'>0
+ (1= ~yabar) (1—yakag)] . (6.29)
with ~ given by
=0 -1). (6.30)

In the decomposition for the Boltzmann operator that is obtained in thisway, the operators
{7, from expression 4.1 can be split upintwo parts, U/, = U, U,_, withapart [, for the
states k£ > 0 and aformally equal part U,_ for thetime-reversed states. The corresponding
matrix U, hasa structure

(U O
n= (). 62
where furthermore the submatrices are equal, U, = U,,. Asdiscussed in section 4.5.3,

such matrices lead to good sign characteristics for even-even systems. Note that for the
canonical trace of U/, one hasto sum over al fillings (N, N_) forwhich Ny + N_ = N:

-er (Ug) = N++;_:N-|ﬁr]\f+ (Ug+) -er_ ([jg_) . (632)
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Further advantages of this decomposition are that its error is only proportional to the
commutators of the operators Hy, P, Ps,..., Po, The Ieadl ng error term is proportional
to 5 . The matrices that represent the operators 1+ ~a k,ak are extremely smple (the
unlty matrix with the element (£', k) set to ). Therefore the matrix multiplications that
are needed to build up U, are smple and fast. Multiplying a matrix with the matrix
representation of one inverse-temperature slice requires 2 multiplications with a diagona
matrix and 22 multiplications with matrices of the from 1 + yaz,ak (ar denotes the unit
row vector representing ;). For one slice thisrequires6? flops. The decomposition can
easily be extended for Hamiltonians of the form

Z Gkk/ak,a ak&k. (633)
k,k'>0

To give an idea of the computer time needed for these calculations, we calculated the
neutron internal energy for a system with 30 neutrons distributed over 70 single-particle
states (see section 6.4.2), at a temperature ' = 0.25MeV and an interaction strength
G = 16MeV/56. Thisisavery large system at alow temperature. Most calculations
were performed at higher temperaturesand in much smaller model spaces, so they required
much less computer time. For the decomposition of the Boltzmann operator, N; = 160
inversetemperaturediceswere used. The () R-stabilization technique discussed in section
4.6.1 was applied every 20 dices. The updating scheme of section 4.6.2 was used with
N = 195, Ny = 40, N. = 9. 20 independent Markov chains were run of 9000
thermalization and 45000 sampling steps each. Observables were evaluated every 45
Markov steps. For the internal energy avalue U,, = —630.79M eV was obtained, with
a statistical error of 0.10M eV (at 95%-confidence level). On a PC with a 200-MHz
pentium-pro processor, running a Linux operating system, this calculation took 19 hours.

6.4 Thermodynamical properties of the nuclear pairing
model

6.4.1 Pairingin adegenerateshell

Because a system with pairing in a degenerate shell can be solved analytically, it was an
ideal test case for the SDQMC method. Furthermore, recently, N. J. Cerf [62] presented
a quantum Monte-Carlo method for the study of thermodynamic properties of nuclear
many-body systems using a monopole pairing interaction in the canonical ensemble. He
presented finitetemperatureresultsfor amodel witha(%14,,)® configuration. Thisseemed
to us an ideal point of comparision for our finite temperature calculationsin the canonical
ensemble. To our surprise, we found quite different results.

The space of configurationstakeninto account by Cerf istoo limited to calcul ate properties
at finitetemperature. The peak in the specific heat versustemperaturecurvearound 1 MeV
that is mentioned in [62] is, in our opinion, an artefact of a too small many-body space.
With aMonte-Carlo cal culation in the compl ete N-particle many-body space, we observe
amuch sharper peak in the specific heat around 1.25 MeV, originating from nucleon pair
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breakup.

The method of Cerf isbased on apath-integral over chains of configurationsC'(t1), C(t2),
..., C(tp) that are periodic in time. The C(t;) are states in the Fock space of many-
body states. They are sampled with a Metropolis random walk. Though no details are
given on how the many-body states are sampled, it appears to us that Cerf only considers
states where all particles are accompagnied, i.e. if a state |j/m) is occupied, then the
state |51 — m) isaso occupied [60]. This set of configurationsis sufficient for the study
of the ground state of the system [63], where all nucleons are accompagnied. At finite
temperature, however, the pairs of accompagnied particles can be broken up by thermal
fluctuations. Then also configurations with unaccompagnied nucleons have to be taken
into account.

In reference[62], Monte-Carlo results starting from amodel with a (%15 /2)® configuration
and with a constant pairing strength of G = 1MeV, were compared to exact results
obtained in the quasispin formalism. The energy levels and degeneracies for this model
arelisted intable 6.1. We calculated the thermodynamical properties of this system using
the SDQMC in the canonical ensemble (see section 4.3), based on the decomposition
presented in the previous section. Figure 6.1 shows the internal energy of the system as
afunction of temperature. Our Monte-Carlo results are in excellent agreement with the
exact results that are based on the degeneracies given in the third column of table 6.1.
They differ clearly from the results for the fully accompagnied states only, with which the
Monte-Carlo results of Cerf coincide. It is observed that the internal energy startsto rise
at temperatures near to 1 MeV. This leads to a distinct peak in the specific heat around
1.25 MeV, asisshownin figure 6.2. The curve for the fully accompagnied states shows a
lower and broader peak at temperatures around 2 MeV. This peak was associated by Cerf
with the vanishing of nucleon pair correlations. However, the breakup of the pairs starts
already at lower temperatures. This results in the stronger peak that we observe around
1.25 MeV.

Though the Monte-Carlo method presented in [62] offers an interesting way to study pair
correlations in nuclel, we emphasize that a full treatment of the complete many-body
space isrequired to study properties at finite temperature.

6.4.2 Thermodynamical properties of a model with pairing for Fe
nucle.

Thermodynamical properties of nuclel in the Fe region were studied in a model with a
Hamiltonian of the form 6.6. For the mean-field potential, a\Woods-Saxon potential U/ (r)
isused, given by [64]

U(r) = ‘/(:—Vf(;v)—l-( h ) v (0.1)%%f(xso), (6.34)
where
V. = Zée[r, r> R,
= [2¢*/(2R.)| 3 -1*/R?), r <R, (6.35)

R. = r.AY?
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Figure 6.1: Internal energy U versus temperature T. Error bars on our Monte-Carlo data were
omitted because they are smaller than the symbols marking the data points. Cerf’'s Monte-Carlo
results are not shown. They coincide with the dashed curve.

Figure 6.2: Specific heat C versustemperature T. Error bars on the Monte-Carlo data represent
95%-confidence intervals. Cerf’s Monte-Carlo results are not shown. They coincide with the
dashed curve.
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flz) = (14" witha = (r - 7’0A1/3) /a, (6.36)
(mh c) = 2.000 fm?. (6.37)

Here, A isthe number of nucleons, Z the number of protons. The other parameters are
taken asin [64]

V = 53.3427(A—-27)/A—-047Z/A* MeV,

ro = 1.25 fm,
a = 0.65 fm,

Vo = 7.5 MeV,

Tso = To,

as, = 0.47fm.

To calculate the mean field and its eigenfunctions, we use the parameters for the nucleus
SeFes0. Thismean field isused for al nuclel in this particular mass region. For every set
of angular momentum quantum numbers/ and j, the Woods-Saxon potential is diagonal -
ized in a basis of the lowest 60 harmonic-oscillator eigenfunctions with the appropriate
symmetry. In this way, the single-particle eigenstates and their energies listed in table
6.2, are obtained. Also a number of unbound states (with energy > 0) are obtained. In
fact, the Woods-Saxon potential exhibits a continuum of unbound eigenstates. Due to
the expansion in a finite number of basis functions, discrete unbound energy levels are
obtained. These can be seen as a discrete approximation to the continuum of unbound
states.

The 1s1, 1Ipa, 1p1,lds, 1d: and 2s. orbitals are considered to be compeletely filled.
They form an inert core for the many>body problem. The 1z, 2p=,2p. and 1 £ orbitals
constitute the valence shell. o7 ’

For the strength of the pairing interaction we took G = 20MeV/56, in accordance with
expression 6.5. The same strength was used for protons and neutrons, and for al nuclei
in the Fe mass region.

The lines that connect the data points on the figures in this section are ment to guide the
eye. They do not correspond to analytical results or fitted curves. Error limits represent
95% confidence intervals. If no error limits are shown, this means that they are smaller
than the markers of the data points, unlessit is stated that no error limitswere determined.

Proton and neutron contributions

Some thermodynamical properties of the pairing model for 5Fe;, were studied using
SDQMC. Because the proton and neutron systems are not coupled to one another, separate
resultsfor both particle typesare obtained. Theinternal energy of thetotal system and the
contributions of the proton and neutron subsystems are shown as afunction of temperature
infigure 6.3. The sameisdonefor the specific heat in figure 6.4 The neutrons contribute
more to the internal energy than the protons, because there are more valence neutrons
than valence protons. This also leads to a dightly stronger pesk in the specific-heat
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orbital single-particle energies (MeV)
protons neutrons
Tst 347106 42,0333
1ps -25.3351 -32.2120
1p: 24,0715 -31.1979
1ds -15.0034 1215607
1ds “12.7911 -19.6359
251 -12.3511 -19.1840
17 41205 104576
2p: -2.0360 -8.4804
21 112334 _7.6512
A -1.2159 -7.7025
351 47316 -0.3861
25 5.6562 0.2225
2, 6.1324 0.9907
1gs 6.6572 0.5631
3ps 6.6663 25031
3p: 6.7469 26915
4ot 8.9016 4.4706
lg: 9.1386 3.5488

Table 6.2: Sngle-particleseigenstates of the Woods-Saxon potential.
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Figure 6.3: Internal energy U as a function of temperature 7" for a systemwith 6 protonsand 10
neutronsinthel fz2pa2p.11fs shell,withameanfieldanda pairinginteraction, G = 20 M eV/56.
The energy scale s aéaptz)ed slich that the total , proton and neutron internal energiesall tend to O
at low temperature.

Figure 6.4: Specific heat C' as a function of temperature T' for a system with 6 protons and 10
neutronsinthel fz 2p22p.11fs shell,withameanfieldanda pairinginteraction, G = 20 M eV/56.
2 2 2 2
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curve for neutrons than for protons. Qualitatively, thereis no big difference between the
thermodynamical properties of both subsystems. This is not the case at lower values of
the interaction strength G.

Dependence on the pairing interaction strength G

We have studied the pairing model for 55Fe;, for severa values of the pairing interaction
strength. SDQMC calculations were performed for 10 neutronsin ashell with 20 valence
states ( 1f%, 2p3,2p1 and 1f% orbitals) and for 6 protonsin the same shell.

The neutron energy as a function of temperatureis shown in figure 6.5. The energy scale
was chosen such that the inert core had zero energy. The fact that the energy does not
go to much higher values as the temperature increases, is due to the limited size of the
model space: not enough high-lying states are included. Aswe shall discuss later on, the
resultsfor 7' > 1.5M eV are not physical anymore. For larger values of ¢, the systemis
more strongly bound. Furthermore, when raising the temperature, the system staysin its
ground state longer than for smaller values of ;. Thisindicatesthat thereisan energy gap
between the ground state and the first excited state proportional to (7, asis expected from
BCS theory. The neutron specific heat as a function of temperatureis shown in figure 6.6.
To give aclear picturefor thevalues at low temperature (high 3), the neutron specific heat
is also shown as a function of 3, in figure 6.7. The dotted line indicates the results for
G = 0, thusfor apure mean field. Withincreasing strength (7, the peak in the specific heat
curve shifts to a dightly higher temperature and becomes more pronounced. In general,
peaks in the specific heat can be interpreted as signs of a phase transition. We see here
that the pairing correlations, for G > 20M eV//56, seem to induce a phase transition in the
system.

Analogous calculations were done for protons. The proton energy as a function of
temperature is shown in figure 6.8. The proton specific heat is shown as a function of
temperatureinfigure 6.9, and also as afunction of 3, in figure 6.10. The same discussion
as for the neutron results, applies here. There is, however, a striking difference in the
specific-heat curve for low values of (¢ asecond peak developsaround 3 = 5MeV ! for
G = 10MeV/56. At thisvalue of the pairing strength, the first peak in the specific-heat
curve, around 3 = 1.5MeV ™1, coincides with the peak in the the specific-heat curve
for a pure mean field. This means that this peak is related to the condensation of the
valence particles in the lowest energy levels of the valence shell (the 1 f: orbital). The
second peak is entirely due to pair correlations, that develop among the 6 particles in
the 1 fg orbital. In figure 6.11, the number of accompagnied pairs and the expectation

value of the pairing operator S, S_ are shown as afunction of 5. While the system with
G = 20MeV/56 becomes completely accompagnied and reaches full pairing strength at
values of 3 > 3MeV ™1, the system with G = 10MeV/56 comes to this regime only at
valuesof 3 > 6MeV 1. Infigure 6.12, the number particlesin the 1 fg orbital and the
number of particlesin the other orbitalsare shown. For the system with G = 10M eV/56,
it is observed that approximately all 6 particles occupy statesinthe 1 f z orbital for values
of 3 > 3MeV~'. The fact that the pairing correlations reach their maximum for this
system only at valuesof 3 > 6MeV !, means that the system passes through two phases



6.4 Thermodynamical properties of the nuclear pairing model 157

Figure 6.5: Neutron energy U,, as a function of temperature T' for a system with 10 neutronsin

the 1f72ps2p11fs shell, with a mean field and a pairing interaction, for various values of the
L. 2 2 2

pairing strengt?h G

Figure6.6: Neutron specific heat €', as a function of temperatureT” for a systemwith 10 neutrons

inthelfz2p22p11fs shell, with a mean field and a pairing interaction, for various val ues of the
2 2 2 2

pairing strength ¢
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Figure 6.7: Neutron specific heat C,, as a function of inverse temperature temperature 5 for a

systemwith 10 neutronsin the 1f7 2p3 2p1 1fs shell, with a mean field and a pairing interaction,
2

for various values of the pairing strength G

Figure 6.8: Proton energy U, as a function of temperature 7" for a system with 6 protonsin the
1fz2ps 2p1 1f5 shell, with a mean field and a pairing interaction, for variousvalues of the pairing
strengt?l G
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Figure 6.9: Proton specific heat C', as a function of temperature 7’ for a system with 6 protons

inthelfz2p22p11fs shell, with a mean field and a pairing interaction, for various val ues of the
2 2 2 2

pairing strength ¢

Figure 6.10: Proton specific heat C), as a function of inverse temperature temperature 3 for a

systemwith 6 protonsinthe 1 fz2p22p11fs shell, with a mean field and a pairing interaction, for
) 2 2 2

various values of the pairing strength ¢
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Figure6.11: The expectation valueof the pairing operator 5+ S_ (dotted lines) and the number of
accompagnied pairs(full lines) as a function of theinverse temperature 5 for systemswith pairing
strength G = 10M eV /56 and G = 20M eV /56 and 6 protonsin the lf%Qp%Qp%If% shell, with
a mean field and a pairing interaction. No error limitswere determined.

asitiscooled: first, the6 valence protonscondenseintothel f: orbital. At 3 ~ 3MeV 1,
this stage is completed. If the temperature is lowered further, pair correlations among
these particles can develop. At valuesof 3 > 6 MeV ! the system is amost completely
cooled to its ground state. For the system with G = 20MeV/56, the occupation of the
Lf orbital reaches a maximum of about 5.3. The particles aways remain spread over al
the valence shell orbitals, because the pairing interaction is now strong enough to scatter
them out of the 1 f r orbital, even in the ground state.

Dependence on the size of the model space

For the description of the high-temperature properties of the system, the model space
given by the fp shell istoo small. At temperatures of afew MeV, valence particles can
be excited to higher-lying single-particle states, or core particles can be excited into the
valence orbitals or higher energy states. In order to know up to what temperatures the
results that we obtained in the fp shell are valid, we performed a number of calculations
in larger model spaces. First, the3s1, 2ds, 2d: and 1¢. orbitals are added to the single-
particlespace. Thisleadsto amany-bQOdy 5rob| emof 6and 10 particlesin42 single-particle
states. In a second extended model the core states are considered as valence states too.
Thereforethe 1s1, 1pz, 1p1, 1ds, 1d: and 2s1 orbitals are added. Furthermore, also the
3pz, 3p1 and 4s;: orbitals are taken into account. Thisleadsto a many-body problem of
26and 30 particIQes in 70 single-particle states.
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Figure 6.12: The number particlesinthe 1z orbital (full line) and the number of particlesin the
other orbitalsof thevalence shell (dottedli ne)Qasa function of theinver setemperature g for systems
with pairing strength G = 10M eV /56 and G = 20M eV /56 and 6 protonsin the 1f% 2p%2p% 1f§
shell, with a mean field and a pairing interaction. No error limitswere determined.

Because multiple shells are used, the model space of the extended systems contains
spurious excitations related to center-of-mass motion. Therefore, care has to be taken
when relating high temperatureresultsto internal excitations of the system. For the second
extended model space (without core), these center-of-mass motions can be interpreted as
thermal excitations of the collective degrees of freedom. This picturewould be physically
meaningful in the absence of a mean-field potential The fact that the mean-field potential
is localized in space, bresks the trandationa invariance of the model. Therefore, one
cannot separate the center-of-mass motion from the intrinsic excitations in a clean way
[65]. A consistent treatment of spurious states isatopic for further research.
Theresultsfor theinternal energy and the specific heat obtained using these model spaces
are shown in figure 6.13 to 6.16. If the value for the pairing interaction strength & is not
changed, then a system with a larger model space will have a lower ground-state energy
because the larger model space alows stronger pair correlations. In order to obtain a
comparable pairing energy, a reduced pairing interaction strength of G = 16 MeV/56 is
used for the extended shells. For the no-core system, the energy is shifted such that the
ground-state energy coincides with the ground-state energy of the fp shell system.

In the second extended model space, at high temperatures (7' > 2M eV'), the specific-heat
curve coincides with the specific-heat curve for G = 0. In this temperature region, the
proton and neutron internal energy are some 5M eV lower than inthe G = 0 case. Apart
from this shift, the internal-energy curves are similar to the G = 0 case. Thisindicates
that, at high temperatures, the pairing Hamiltonian enhances the binding energy but has
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Figure 6.13: Neutron energy U,, as a function of temperature T for a systemwith 10 neutronsin
the 1fz22p22p11fs shell (a), for a systemwith 10 neutronsin the first extended model space (b)
and for a 32y§e2m with 30 neutronsin the second extended model space (c). The dashed line gives
the result for the second extended model space without pairing (G' = 0).

Figure6.14: Neutron specific heat C',, asa function of temperature T’ for a systemwith 10 neutrons
inthelfz2p22p11fs shel (a), for a systemwith 10 neutronsin the fir st extended model space (b)
and for a sythemQWitﬁ 30 neutronsin the second extended model space (¢). The dashed line gives
the result for the second extended model without pairing (G = 0).
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Figure 6.15: Proton energy U, as a function of temperature 7" for a systemwith 6 protonsin the
1f22p22p11fs shell (a), for a systemwith 6 protonsin the first extended model space (b) and for
a silste?n with 26 protonsin the second extended model space (¢). The dashed line gives the result
for the second extended model without pairing (G = 0).

Figure 6.16: Proton specific heat C', as a function of temperature 7" for a system with 6 protons
inthe1fz2p22p11fs shel (a), for a systemwith 6 protonsin the first extended model space (b)
and for a sys%emgwitﬁ 26 protonsin the second extended model space (c). The dashed line gives
the result for the second extended model without pairing (G = 0).
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no effect on the interna structure.

Because the internal energy is related to the derivative of the logarithm of the partition
function Z; (expression 4.10), and because 7 isthe Laplace transform of thelevel density
g(E) of excited states (expression 4.14), the constant shift in the internal energy at high
temperature can berelated to ashiftin g(£). Let U/; and ¢4 ( F) denote the internal energy
and thelevel density for the system with pairing, and U, and ¢o( £) theinternal energy and
the level density for the system without pairing. At high temperature (low ), we have
Uy ~ Uy —5MeV. By integrating Uy and U; form 5 = 0 to 8 = 1/T, the logarithms of
the partition functions are obtained (In (Z ) and In (Z 3, ) respectively).

In(Zs) = In(Zgo) +5MeV 8 (6.38)
Y
Zg = oFMeVi Zs0
Y
gi(E) = go(E+5MeV) (6.39)

The main effect of the pairing Hamiltonian on the level density of the excited states is
a shift of the curve go( £) to lower energies. At lower temperatures, the specific heat
curve deviates from the curve for G = 0, because pairing correlations develop. This
will have an effect on the tail of the partition function 73, for high 5 and on the level
density ¢;(F) a low energies. By comparing the results for the fp shell and the first
extended model space, we see that the fp shell istoo small to describe the system at
temperaturesT > 1.3M eV . In order to compare with the results for the second extended
model space around temperatures of 1M eV, the pairing interaction strength ' ought to
be reduced somewhat more for the latter model space. The vanishing of pair correlations
with increasing temperature, starting from 7" ~ 1MeV, was also observed in shell-model
quantum Monte-Carlo calculationsfor 5 Fe,s based on moreredlisticinteractions[66, 67].
Theinteresting topic of proton-neutron pairingin N = Z nuclei [68], could of course not
be adressed with the schematic mean-field plus pairing Hamiltonian 6.6.

Dependence on the number of particles

We studied systems with various numbers of neutrons in the fp shell: 3iFesx, 5aFe,
SeFes and 57 Fe;; were modelled by considering 8, 9, 10 and 11 neutronsin the fp valence
shell, respectively. For the systems with 9 and 11 neutrons, the sign rule discussed in
section 4.5.3, that guaranteed good sign characteristics for even-even systems, does not
apply. The average sign s for the various systems is shown as a function of the inverse
temperature 3 in figure 6.17. For the odd systems, accurate calculations are possible up
to values of 3 ~ 4MeV . This corresponds to a temperature of 7 ~ 0.25MeV. This
temperature is low enough to get a good approximation of the ground state. The neutron
interna energy U,, for the various systems is shown as afunction of temperaturein figure
6.18. The proton internal energy is not shown because it isequal for al four systems and
itisaready givenin figure 6.8. While at high temperature the internal energy curves are
equidistantly spaced, with an interval of about 9M eV, thereisashift to lower energiesfor
the systems with 8 and 10 neutrons at low energy. Thisis because the pairing correlations
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Figure 6.17: Average sign s as a function of inverse temperature 5 for systems with 8,9,10
and 11 neutronsin the 1 fz2p22p11fs shell, with a mean field and a pairing interaction (G =
2 2 2 2

20MeV/56).

Figure 6.18: Neutron internal energy U,, as a function of temperature 7' for systemswith 8,9,10

and 11 neutronsin the 1 f72p2z2p11fs shell, with a mean field and a pairing interaction (G' =
2 2 2 2

20MeV/56).
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Figure 6.19: Neutron internal-energy shift AU+, as a function of temperature T' for a systems

with 10 neutronsinthe 1 fz2pz2p11fs shell, with a mean field and a pairing interaction (G =
2 2 2 2

20M eV /56). The dashed lineindicatesthe experimental value of the ground-stateenergy shift for

38Feso.

26 0

are stronger for the even systems than for the odd systems at temperaturesbelow 1M eV
The shift in the internal energy for the system with 10 neutrons can be quantified as

Uno + Up1a

AUy = 5

— Unio, (6.40)
With U,q, U0, Us11 the neutron internal energies for the systems with 9, 10 and 11
valence neutrons respectively. The quantity AU, is shown as a function of temperature
in figure 6.19. The ground-state energy shift was calculated analogously to expression
6.40, with the internal energies replaced by the mass excesses given in reference [69]. A
value of 1.776 M eV was obtained. The SDQMC results approach this value remarkably
well at temperatures below 0.5M eV'. The quaitative difference between the odd and the
even systems also shows up in the specific-heat curve presented in figure 6.20.

We conclude this chapter by stating that SDQMC offers a powerful tool for the study of
the nuclear pairing model. We have put emphasis on the thermodynamical properties.
Occupation numbers and the pairing gap can be calculated too using SDQMC. Main
advantages of SDQMC over other methods are that many-body correlations are taken
into account exactly, particle numbers are constant and finite temperature results can be
obtained. The major disadvantage of the method is that spectroscopic information can
only be obtained indirectly. Finally, we remark that our calculations indicate that pairing
correlations are important only at low temperature ( below 1M eV) and at low excitation
energies.
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Figure 6.20: Neutron specific heat ', as a function of temperature 7" for systems with 8,9,10

and 11 neutronsin the 1 fz2p22p11fs shell, with a mean field and a pairing interaction (G =
2 2 2 2

20MeV/56).






Neutrino scattering

In this chapter arguments are given that the nuclear temperature might be an important
parameter for the calculation of neutrino-nucleus scattering cross sections relevant for
supernova processes. We describe how thisinfluence can be studied using SDQMC.

7.1 Neutrino-nucleusscattering cross-sectionsand thenu-
clear temperature

Of late years, neutrino-nucleus scattering has caught a lot of attention in connection
to astrophysical topics like the supernova explosion mechanism and supernova nucle-
osynthesis. Especialy for the latter topic, neutrino-nucleus cross-sections are necessary
ingredients for understanding the mechanisms at work. Though most of the nuclei are
synthesised via the long known s- and r-processes (neutron capture and beta decay), the
origin of some nuclel cannot be explained in thisway. Neutrino induced reactions might
play acentral role in the synthesis mechanism of nuclei like ' Be, 12 F, 189T'q [71, 72].
Also in the supernova explosion mechanism neutrinos play an important role. The most
abundant elements in the outer shells of a supernovaare *He, 12C, 0, 2° Ne and 22 5.
Hereit isimportant to know how much energy the neutrinos can transfer from the core to
the envel ope of the supernova. A third way in which neutrino scattering on atomic nuclei
might play arole in supernovae, is in the r-process nucleosynthesis that might possibly
take place during supernova explosions. Here, charged-current el ectron-neutrino captures
can compete with the normal 3-decays during the r-proces [70]. This might shorten the
time scale for the r-proces.

Up till now, calculations of these cross-sections only considered excitations out of the
nuclear ground state. However, due to the high temperatures in supernova processes
(10°K or higher), part of the nuclei may be in an excited state before interacting with a
neutrino. Although even at such high temperaturesonly a small fraction of the nuclei will
beinthefirst excited state, this might have animportant influence on thetotal cross-section
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due to two effects that can enhance the cross-section for scattering out of excited states
compared to scattering out of the ground state.

First, there is an energy effect: supernova neutrinos have a thermal energy distribution,
which can be described by a Fermi-Dirac distribution with a temperature of 5to 10 MeV
[73]. Neutrinos from the tail of this distribution will dominate the cross-section, which
is proportional to F2. If the scattering takes place on a nucleus in the first excited state,
the neutrino does not need to have such a high energy in order to bring the nucleus into
the same resonant state and to keep the same final energy as it would need to have for
scattering the nucleus out of its ground state. Consequently, alarger part of thetail of the
neutrino spectrum can contribute, and since thistail falls of exponentialy this can lead to
a considerable enhancement for the scattering out of thefirst excited state.

Secondly, there can be a cross-section effect: if one decomposes the cross-section formula
into its various multipoles, one would expect the cross-section to be dominated by the
lowest multipoles. However, due to selection rules, shell effects and Pauli blocking the
monopol e contribution can be strongly suppressed for excitation out of the ground state.
Continuum-RPA calculations show that this is actualy the case for nuclei like *2C' and
160) [74], for whichthe 1~ and 2™ transitions give thelargest contributions. We performed
a self-consistent continuum-RPA calculation based an effective force of the Skyrme type
(Skell). A continuum-RPA codedevel oped by Jan Ryckebusch [ 75] for the study of electon
scattering on atomic nuclel, was adapted for the study of neutrino scattering. The semi-
inclusive cross-section for the neutral-current scattering of a50M eV neutrino on an 160
nucleus in the ground-state is shown in figure 7.1 as a function of the excitation energy
w. Also the 1~- and 2~ -multipole contributions induced by the axial-vector current are
shown. Together, these two contributions account aimost for the total cross-section. In
the above cases monopole transitions are probably not suppressed for excitations out of
thefirst excited state, so that again their contribution to the total cross-section isenhanced.
Note that the energy effect is restricted to supernova neutrinos, dueto their thermal energy
distribution, whilethe cross-section effect ismoregeneral. In order to know to what extent
these simple arguments are valid in a supernova-environment, amorerealistic study of the
temperature dependence of neutrino-nucleus scattering cross-sections is necessary. This
can be done using the shell-model Monte-Carlo method.

7.2 Calculation of neutrino-nucleusscattering cr oss-sections
using SDQMC

The shell-model Monte-Carlo method (SMMC) [6] presents an interesting approach to
study the nuclear many-body problem. It alows the calculation of exact results, up to
controllable statistical and systematical errors, in much larger model spacesthan the shell-
model methods based on diagonalisation. Therefore it can be applied to a wide range of
nuclei. It isbased on a stochastic evalutation of the nuclear thermodynamical partition
function

7 ="Tr (), (7.2)
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Figure7.1: Neutral-current neutrinoscattering cross-sectionon 60 asafunctionof theexcitation
energy w for anincoming-neutrino energy of 50 M eV, cal culated using continuumRPA. Total cross-
section (thick full line), 1~ axial-vector contribution(dashedline) and 2~ axial-vector contribution
(thin full line).

where the inverse temperature 3 is an input parameter. S0 it is a finite temperature
method. The response function R 4 5(7) for operators A and B can be calculated using
the expression

Tr (e_(ﬁ_T)HAe_THB)

7)== ()

(7.2)

Inserting complete sets of eigenstates of £ ( {|:),|f)} with energies E; ;) shows that
Ras(r) = & 30 e e~ (BB Ll ) f1B1) 73
if

The neutrino-nucleus scattering cross-section is then given by the expression

do? G2

d0[do] ~ (27) s

(1 [ e [ﬂ cos (6/2) J9 (7) —

(é;—l—é}:—zé;xé}) - 2(74)

V2cos (0/2) . J(F)] a1

where 6 is the neutrino scattering angle, ¢, is the outgoing neutrino energy, ¢ is the
momentum transfer, €; and €; are the unit vectors along the incoming and outgoing

X

neutrino direction respectively and /o () and .J (') are the components of the hadronic
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weak neutral current. Using equation 7.2, with

(a + gf — Zé; X gf)
V2 cos (0/2)

leads to wrong results because ¢ depends on the energy transfer w = E; — E;, which aso
shows up in the factor e ~"(¥7=Fi) in equation 7.3. In order to obtain an expression based
upon the response functions for operators A and B that are independent of w, one can
perform a series expansion of ¢ ~@" in orders of w. This leads to the result

At=B= / =07 [\/3 cos (6/2) JO (7) — J@|dr,  (75)

N . . ] ]
e = =IO S (cos(0/2)x — sin(6/2)z)’ “j—, (7.6)

J

where ¢; isthe ingoing neutrino energy and where we have choosen the axes such that €,
is oriented along the direction of ¢; — €} and €, is along the direction of ¢; x €;. Note
that the expansion parameter is small so that only a few terms in the expansion have to
be taken into account. This leads to an expression for the cross-section in aform that is
suitable for calculation using the SMMC:

[2] 2 2 itk Tr (e=(B-7)H Ate—rH 4
do a (E d)z 1 (d) ( fe=mAy) a7

dQfdo] — (2x)? " dr) 47k \dr Tr (c-94) ’
with
Ay = V2 [ et (cos(/2)a — sin(0/2):) (7.8)
(cos(6/2).00 (7) = Jo (7) + i sin(0/2).J, (7)) dF. (7.9)

The derivatives have to be taken on each Monte-Carlo sample in order to obtain small
enough errors on the final result. After taking the limit of  — 0, the SMMC will yield
the cross-section (22(6, ¢;)) for given scattering angle ¢ and incoming neutrino energy
€;, integrated over the energy transfer variablew. By taking additional derivativestowards
7 and 3, also the average energy transfer (w26, ¢;))s and the average excitation energy
(E¢92(0, ¢;))5 can be obtained. By performing an inverse Laplace transform on 7, which
is numerically somewhat more tricky, even the strength distribution can be calcul ated.

7.3 Conclusions and outlook

The nuclear temperature might be an important parameter in carrying out calculations
of neutrino-nucleus scattering cross sections relevant for supernova processes. This
can be taken into account within SDQMC. Detailed formulas for the calculation of
neutrino-nucleus scattering cross-sections have been derived. Results for the reactions
2C(v,v")C*, 1O (v, ") O*, **Ne(v, ') Ne* and **Fe(r, v') Fe*, will be studied.



Detailed SDOMC resultsfor the
Hubbard model

In this appendix detailed SDQMC results are listed for the internal energy of the4 x 4
repulsive Hubbard model. Ground-state energies obtained by diagonalization (DIAG)
and SDQMC with ground-state projection (PQMC), listed in table A.1, are taken from
reference[7].
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Iv; 414) |eror || 515 |eror || 616] |eror || 71T7] | eror || 81 8] | error

0.50 -887 | 004 || -89 | 002 | -813 | 001 | -6.18 | 0.03 | -290 | 0.03
1.00 -1365 | 0.02 || -14.18 | 0.01 || -1357 | 0.01 || -11.86 | 0.02 || -8.73 | 0.04
1.50 -1565 | 0.01 || -16.45 | 0.01 || -15.62 | 0.01 || -13.76 | 0.01 || -10.79 | 0.03
2.00 -16.60 | 0.01 || -17.85 | 0.01 || -16.61 | 0.01 || -1458 | 0.01 || -11.69 | 0.04
2.50 -17.04 | 001 || -18.74 | 0.01 || -17.13 | 0.02 || -15.00 | 0.02 || -12.29 | 0.05
3.00 -17.26 | 0.01 || -19.21 | 0.01 || -17.40 | 0.01 || -15.23 | 0.02 || -12.74 | 0.06
3.50 -17.35 | 0.01 || -19.43 | 0.01 || -1754 | 0.01 || -15.36 | 0.03 || -12.93 | 0.04
4.00 -17.40 | 0.01 || -1953 | 0.01 || -17.60 | 0.01 || -15.46 | 0.03 || -13.10 | 0.04
4.50 -1957 | 001 || -1764 | 0.02 || -1553 | 0.03 || -13.20 | 0.04
5.00 -17.44 | 0.01 || -1959 | 0.01 || -17.67 | 0.01 || -1555 | 0.06 || -13.32 | 0.04
8.00 -19.60 | 0.01 || -17.73 | 0.26 || -15.49 | 0.86 || -13.55 | 0.05
10.00 -19.60 | 0.01 || -17.61 | 0.44

12.00 -19.60 | 0.01 -15.66 | 0.52

16.00 -13.56 | 0.03
DIAG | 17.53 -19.58 -17.73 -15.74 -13.62

PQMC 17.3 -19.4 -15.7 -13.6

Table A.1: Internal energy E obtained using SDQMC with the canonical algorithm, at several
values of the inverse temperature § for the 4 x 4 Hubbard modedl at U = 4 at various fillings
Error limits indicate 95%-confidence intervals (statistical errors only). Ground-state
energies obtained by diagonalization (DIAG) and SDQMC with ground-state projection (PQMC)
are given for comparison.

(N1 N)).




Ié 415 |earor ||416]) |earor || 516 |eror||b517] |eror ||[617] |eror ||[618]) |error | 718]) |eror| 719 | eror
0.50 -901 | 002 || -88 | 002 | -865 | 003 | -806 | 003 ]| -727 | 003 | -6.12 | 004 || -472 | 0.03 || -283 | 0.04
100 || -14.02 | 0.05 || -13.98 | 0.05 || -14.03 | 0.06 || -13.47 | 0.08 || -12.80 | 0.09 || -11.70 | 0.09 || -10.38 | 0.11 || -850 | 0.11
150 || -16.16 | 0.02 || -16.04 | 0.02 || -16.15 | 0.02 || -15.44 | 0.02 || -14.79 | 0.03 || -1364 | 0.03 || -12.39 | 0.03 || -10.63 | 0.04
200 || -17.33 | 0.03 || -17.06 | 0.03 || -17.30 | 0.04 || -16.40 | 0.04 || -15.62 | 0.05 || -1453 | 0.06 || -13.24 | 0.06 || -11.58 | 0.07
250 || -17.96 | 0.02 || -1754 | 0.02 || -17.92 | 0.03 || -16.96 | 0.03 || -16.10 | 0.04 || -1490 | 0.04 || -13.72 | 0.05 || -12.25 | 0.06
3.00 || -1828 | 0.02 || -17.80 | 0.02 || -1830 | 0.02 || -17.27 | 0.02 || -16.34 | 0.03 || -15.19 | 0.03 || -14.02 | 0.04 || -1254 | 0.05
350 || -1842 | 0.02 || -17.95 | 0.02 || -1848 | 0.02 || -17.41 | 0.03 || -16.49 | 0.03 || -15.30 | 0.03 || -14.21 | 0.04 || -12.82 | 0.04
400 || -1850 | 0.01 || -18.01 | 0.02 || -1856 | 0.02 || -1753 | 0.02 || -16.59 | 0.03 || -15.39 | 0.04 || -14.29 | 0.04 || -13.00 | 0.04
450 || -1851 | 0.02 || -18.05 | 0.02 || -1861 | 0.02 || -1759 | 0.03 || -16.58 | 0.03 || -15.50 | 0.04 || -14.39 | 0.04 || -13.06 | 0.04
5.00 || -1853 | 0.02 || -18.07 | 0.02 || -1864 | 0.02 || -17.61 | 0.04 || -16.59 | 0.04 || -1549 | 0.05 || -14.45 | 0.04 || -13.23 | 0.04
6.00 || -1856 | 0.02 || -18.11 | 0.03 || -18.64 | 0.03 || -17.66 | 0.10 || -16.58 | 1.40 || -1552 | 0.20 || -1451 | 0.07 || -13.33 | 0.04
7.00 || -1854 | 0.02 || -18.12 | 0.03 || -1868 | 0.04 || -1764 | 0.21 || -16.77 | 0.49 || -1552 | 0.87 || -1452 | 0.51 || -13.36 | 0.03
8.00 || -1854 | 0.03 || -18.16 | 0.27 || -18.66 | 0.09 || -17.69 | 0.59 || -16.81 | 0.78 || -1558 | 053 || -14.62 | 042 || -13.42 | 0.03
10.00 || -1853 | 0.30 || -18.12 | 0.25 || -1868 | 0.47 || -17.69 | 0.71 || -17.05 | 046 || -15.79 | 0.52 || -14.60 | 1.03 || -13.41 | 0.03

Table A.2: Internal energy E obtained using SDQMC with the canonical algorithm, at several values of the inverse temperature 3 for the 4 x 4
Hubbard model at U = 4 at variousfillings (N1V|). Error limitsindicate 95%-confidence intervals (statistical errorsonly).
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I5} 414 |eror || 515 |eror||616) |eror || 7T17]) |eror | 818] | eror
0.50 -8.38 | 0.02 || -7.30 | 0.03 || -497 | 0.08 019 | 011
100 || -1271 | 0.16 || -12.67 | 0.04 || -11.31 | 0.06 || -883 | 0.04 || -492 | 0.05
1.50 -1439 | 0.06 || -12.78 | 0.06 || -9.93 | 0.06 || -5.82 | 0.06
200 || -15.37 | 0.02 || -1551 | 0.04 || -13.62 | 0.04 || -10.48 | 0.04 || -6.42 | 0.09
250 || -1586 | 0.03 | -16.24 | 0.05 || -14.02 | 0.05 || -10.81 | 0.06 | -6.90 | 0.06
3.00 || -16.13 | 0.06 || -16.85 | 0.05 || -14.37 | 0.09 || -11.05 | 0.09 || -7.33 | 0.15
350 || -16.24 | 0.05 || -17.19 | 0.07 || -14.46 | 0.14 || -11.25 | 0.13 | -7.65 | 0.14
400 || -16.32 | 051 || -17.41 | 0.07 || -14.71 | 0.26 || -11.24 | 0.35 || -8.01 | 0.15
450 || -16.36 | 0.08 || -17.53 | 0.07 || -1445 | 0.70 || -11.81 | 055 || -8.03 | 0.14
5.00 || -16.39 | 1.19 || -17.48 | 0.08 || -13.77 | 1.57 || -11.93 | 1.39 | -8.12 | 0.08
5.50 -8.44 | 0.13
6.00 || -16.67 | 061 || -17.61 | 0.12 -8.36 | 0.14
7.00 || -16.46 | 1.25 || -17.51 | 0.22 -845 | 0.11
8.00 || -16.75 | 0.79 || -17.55 | 0.68 -8.36 | 0.13
10.00 -850 | 0.10
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Table A.3: Internal energy E obtained using SDQMC with the canonical algorithm, at several values of the inverse temperature 3 for the 4 x 4
Hubbard model at U = 8 at variousfillings (N1 N|). Error limitsindicate 95%-confidence intervals (statistical errorsonly).



Samenvatting

In dit proefschrift wordt een methode voorgesteld voor de studie van fermionische veel-
deeltjessystemen. Het gaat om een statistische methode (een zogeheten ' Monte-Carlo’
methode) die een exacte beschrijving geeft van het quantummechanische veeldedltjes-
systeem, op een controleerbare statistische en systematische fout na. In een eerste deel
worden de bouwstenen van de methode aangebracht en in detail uitgewerkt. Een tweede
deel geeft een aantal toepassingen van de methode, in de eerste plaatster illustratie van de
mogelijkheden van de methode.

In hoofdstuk 1 wordt een matrixrepresentatievoor Slater-determinanten aangebracht. Een
Slater-determinant-golffunctie voor een systeem met N identieke deeltjes verdeeld over
Ns één-deeltjes-toestanden kan voorgesteld worden door een Ns x N matrix. Gebruik
makend van deze matrix-voorstelling, kan de exponentié e van eender wel ke één-dedltjes-
operator voorgesteld worden door een Ns x Ns matrix. De overlap van twee Slater-
determinanten, het inwerken van de exponentiéle van een één-deeltjes-operator op een
Slater-determinant en het canonisch en groot-canonisch spoor van zo een operator kunnen
dan berekend worden met behulp van eenvoudige matrixbewerkingen.

Om deze technieken te kunnen toepassen op de Boltzmann-operator ¢ ~## | die over het
algemeen de exponentiél e van een twee-deel tjes-operator is, wordt in hoof dstuk 2 uitgelegd
hoe de Boltzmann-operator ontwikkeld kan worden in een som van exponentié en van één-
deeltjes-operatoren. Met behulp van de Suzuki-Trotter-formule worden het één- en twee-
dedltjes-stuk in de exponent gescheiden. Dan wordt de exponentié e van het twee-deeltjes
stuk geschreven al's een som van exponentiélen van één-deeltjes-operatoren. Hiervoor kan
men gebruik maken van de 'Hubbard-Stratonovich-transformatie’, die de twee-deeltjes-
interactievervangt door een één-dedltjes-interactiemet een aantal willekeurig fluctuerende
"auxiliaire velden’. Een aternatief voor de Hubbard- Stratonovich-transformatie wordt
gegeven door decomposities gebaseerd op operatoren van rang één en twee. Gebruik
makend van de matrix-representatie uit hoofdstuk 1, kunnen operatoren van rang én en
twee voorgesteld worden door matrices van rang één en twee. Zulke operatoren kunnen
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op verschillende manieren aangewend worden om de Boltzmann-operator te ontwikkelen
in een som van hanteerbare termen.

Het aantal termen dat bekomen wordt in de decompositie van de Boltzmann operator isveel
te groot om ze allemaal uit te rekenen en op tetellen. Om dit probleem te omzeilen wordt
een steekproef genomen uit deze termen, aan de hand waarvan dan een stati stiche schatting
gemaakt wordt voor het gezochteresultaat. De statistiek |eert onsdat het steekproefgemid-
delde het exacte resultaat zal benaderen, als de steekproef maar groot genoeg is. Om op
een efficiente manier een representatieve steekproef te bekomen, wordt gebruik gemaakt
van'Markov-keten-Monte-Carlo-methodes' . In hoofdstuk 3 worden deze methodes voor-
gesteld, in een op zichzelf staande bespreking. De convergentie van deze methodes wordt
aangetoond. Omdat vastgesteld werd dat in de praktijk vaak te lange sampling-intervallen
en niet helemaal correcte foutenmarges gehanteerd worden, wordt in het bijzonder aan-
dacht besteed aan het bepal en van het optimal e sampling-interval en de foutenmargesvoor
deMonte-Carloresultaten. Veel gebruikte Markov-keten-Monte-Carl o-methodeszoal s het
Metropolis algoritme, de Gibbs-sampler en de warmtebad-methode worden voorgesteld.
Twee mogelijkheden om de efficiéntie van Markov-keten-Monte-Carlo-methodes te ver-
hogen, namelijk variantie-reductie en ’ geleide Markov-ketens', worden aangebracht.

De bouwstenen aangebracht in hoofdstukken 1 tot 3, worden samengebracht in hoofdstuk
4 tot de’ Slater-determinant-quantum-Monte-Carlo methode' . Met deze methode kunnen
grondtoestandsei genschappen en thermodynamische eigenschappen van discrete, fermi-
onische veeldedltjessystemen bestudeerd worden in het canonisch en groot-canonisch
ensemble. Bij de berekeningen voor het canonisch ensemble, moet de karakteristieke
veelterm van een groot aantal matrices bepaald worden. Daarom werd een efficiént en
nauwkeurig algoritme ontwikkeld voor het berekenen van de coéfficienten van de ka-
rakteristieke veelterm van een algemene vierkante matrix. Een algemeen probleem van
guantum Monte-Carlo methodes voor fermionen vormt het zogenaamde’ tekenprobleem’.
De oorzaak van dit probleem en mogelijke remedies worden besproken. Tend otte wordt
er in hoofdstuk 4 aandacht geschonken aan enkel e praktische punten, zoals de stabilizatie
van de methode bij lage temperaturen en de optimalizatie van de Markov-keten-Monte-
Carlo-sampling met behulp van " hybride’ samplers.

Ter illustratie van de Slater-determinant-quantum-Monte-Carlo methode worden in een
tweede deel een aantal toepassingen uitgewerkt.

Omdeat het uitvoerig bestudeerd ismet behul p van quantum-M onte-Carlo methodes, vormt
het * Hubbard-model’ een ideal e test-case voor de methode. 1n hoofdstuk 5 wordt een spe-
cifieke, efficiénte decompositie van de Boltzmann-operator voor dit model voorgesteld.
Thermodynamische el genschappen van het repulsieve 4 x 4-Hubbard-model werden bere-
kend met de Slater-determinant-quantum-Monte-Carlo methode in het canonisch ensem-
ble. Tot hier toe werden quantum-Monte-Carlo berekeningen voor het Hubbard-model
steeds uitgevoerd in het groot-canonisch ensemble of met grondtoestandsprojectie. We-
gensdebeperkingen van dezemethodes (0.a. het tekenprobleem), hebben deresultatenvan
deze berekeningen voornamelijk betrekking op gel oten-schil-configuratiesof half-gevulde
modelruimtes. Onze berekeningen in het canonisch ensemble tonen aan dat open-schil-
configuraties kwalitatief verschillende eigenschappen hebben. De gedetailleerde cijfers
zijn weergegeven in appendix A.
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In hoofdstuk 6 wordt de Slater-determinant-quantum-Monte-Carlo methode toegepast
op een atoomkernmodel met een gemiddeld-veld potentiaal en een paarvormingskracht.
Ook voor dit model wordt een specifieke, efficiente decompositie van de Boltzmann-
operator gegeven. Resultaten voor een model met eén enkele, ontaarde schil worden
vergeleken met de exacte resultaten bekomen in het quasispin-formalisme. Toepassing
van het model op kernen in het *°Fe-massagebied levert waarden op voor een aantal
thermodynamische grootheden. Paarvormingscorrel aties spelen een belangrijkerol in de
structuur van atoomkernen bij lage temperatuur. Bij hoge temperatuur (7" > 1MeV),
beperkt hun effect zich tot een extrabijdrage aan de bindingsenergie.

In hoofdstuk 7 tendotte, wordt geargumenteerd dat een formalisme bij eindige tempera-
tuur wenselijk isvoor een accurate beschrijving van neutrino-interacties met atoomkernen
in supernova's. Er wordt geschetst hoe de Slater-determinant-quantum-Monte-Carlo me-
thode hierop toegepast kan worden.
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